Skip to yearly menu bar Skip to main content


Search All 2023 Events
 

60 Results

<<   <   Page 2 of 5   >   >>
Workshop
Describe, Explain, Plan and Select: Interactive Planning with LLMs Enables Open-World Multi-Task Agents
Zihao Wang · Shaofei Cai · Guanzhou Chen · Anji Liu · Xiaojian Ma · Yitao Liang
Workshop
EXPLAIN, AGREE and LEARN: A Recipe for Scalable Neural-Symbolic Learning
Victor Verreet · Lennert De Smet · Emanuele Sansone
Poster
Thu 13:30 Explainability as statistical inference
Hugo Senetaire · Damien Garreau · Jes Frellsen · Pierre-Alexandre Mattei
Workshop
Understanding the Size of the Feature Importance Disagreement Problem in Real-World Data
Aniek Markus · Egill Fridgeirsson · Jan Kors · Katia Verhamme · Jenna Reps · Peter Rijnbeek
Workshop
GraphChef: Learning the Recipe of Your Dataset
Peter Müller · Lukas Faber · Karolis Martinkus · Roger Wattenhofer
Workshop
Data Similarity is Not Enough to Explain Language Model Performance
Gregory Yauney · Emily Reif · David Mimno
Workshop
Accurate, Explainable, and Private Models: Providing Recourse While Minimizing Training Data Leakage
Catherine Huang · Chelse Swoopes · Christina Xiao · Jiaqi Ma · Himabindu Lakkaraju
Workshop
Generalizing Neural Additive Models via Statistical Multimodal Analysis
Young Kyung Kim · Juan Di Martino · Guillermo Sapiro
Workshop
Scoring Black-Box Models for Adversarial Robustness
Workshop
Don't trust your eyes: on the (un)reliability of feature visualizations
Robert Geirhos · Roland S. Zimmermann · Blair Bilodeau · Wieland Brendel · Been Kim
Workshop
Self-verification improves few-shot clinical information extraction
Zelalem Gero · Chandan Singh · Hao Cheng · Tristan Naumann · Michel Galley · Jianfeng Gao · Hoifung Poon
Poster
Thu 16:30 Explaining the effects of non-convergent MCMC in the training of Energy-Based Models
Elisabeth Agoritsas · Giovanni Catania · Aurélien Decelle · Beatriz Seoane