Skip to yearly menu bar Skip to main content


Spotlight

Probabilistically Robust Learning: Balancing Average- and Worst-case Performance

Alex Robey · Luiz F. O. Chamon · George J. Pappas · Hamed Hassani

Room 301 - 303
[ ] [ Livestream: Visit DL: Algorithms ]

Abstract:

Many of the successes of machine learning are based on minimizing an averaged loss function. However, it is well-known that this paradigm suffers from robustness issues that hinder its applicability in safety-critical domains. These issues are often addressed by training against worst-case perturbations of data, a technique known as adversarial training. Although empirically effective, adversarial training can be overly conservative, leading to unfavorable trade-offs between nominal performance and robustness. To this end, in this paper we propose a framework called probabilistic robustness that bridges the gap between the accurate, yet brittle average case and the robust, yet conservative worst case by enforcing robustness to most rather than to all perturbations. From a theoretical point of view, this framework overcomes the trade-offs between the performance and the sample-complexity of worst-case and average-case learning. From a practical point of view, we propose a novel algorithm based on risk-aware optimization that effectively balances average- and worst-case performance at a considerably lower computational cost relative to adversarial training. Our results on MNIST, CIFAR-10, and SVHN illustrate the advantages of this framework on the spectrum from average- to worst-case robustness. Our code is available at: https://github.com/arobey1/advbench.

Chat is not available.