Probabilistically Robust Learning

Balancing Average- and Worst-case Performance

Alex Robey, Luiz F. O. Chamon, George J. Pappas, Hamed Hassani

$$(x,y) = (O, \square) \sim \mathbb{P}(X,Y)$$

$$(x,y) = (O, \square) \sim \mathbb{P}(X,Y)$$

$$(x,y) = (\mathbf{O}, \mathbf{Z}) \sim \mathbb{P}(X,Y)$$

$$\min_{h \in \mathcal{H}} SR(h) \triangleq \mathbb{E}_{(x,y)} \left[\ell(h(x), y) \right]$$

$$(x,y) = (\bigcirc, \square) \sim \mathbb{P}(X,Y)$$

$$h^*$$

$$\min_{h \in \mathcal{H}} SR(h) \triangleq \mathbb{E}_{(x,y)} \left[\ell(h(x), y) \right]$$

$$\min_{h \in \mathcal{H}} SR(h) \triangleq \mathbb{E}_{(x,y)} \left[\ell(h(x), y) \right]$$

$$\min_{h \in \mathcal{H}} SR(h) \triangleq \mathbb{E}_{(x,y)} \left[\ell(h(x), y) \right]$$

$$\min_{h \in \mathcal{H}} SR(h) \triangleq \mathbb{E}_{(x,y)} \left[\ell(h(x), y) \right]$$

$$\min_{h \in \mathcal{H}} AR(h) \triangleq \mathbb{E}_{(x,y)} \left[\max_{\delta \in \Delta} \ell(h(x+\delta), y) \right]$$

$$\min_{h \in \mathcal{H}} AR(h) \triangleq \mathbb{E}_{(x,y)} \left[\max_{\delta \in \Delta} \ell(h(x+\delta), y) \right]$$

Standard risk minimization

"Accurate, yet brittle"

Standard risk minimization

"Accurate, yet brittle"

Adversarial training

"Robust, yet conservative"

Standard risk minimization

"Accurate, yet brittle"

Adversarial training

"Robust, yet conservative"

Question: How can we balance average- and worst-case performance?

Standard risk minimization

"Accurate, yet brittle"

Adversarial training

"Robust, yet conservative"

Question: How can we balance average- and worst-case performance?

Our solution: Probabilistically Robust Learning (PRL)

Core idea: Enforce robustness to most — not all — perturbations.

Core idea: Enforce robustness to most — not all — perturbations.

Algorithmic Theoretical

Theoretical

Algorithmic

► (*Lack of*) *Provable tradeoffs*: Probabilistic robustness is **not** at odds with accuracy

Theoretical

<u>Algorithmic</u>

- (*Lack of*) *Provable tradeoffs*: Probabilistic robustness is **not** at odds with accuracy
 - Linear regression
 - Mixture-of-Gaussians classification

Theoretical

- ▶ (*Lack of*) *Provable tradeoffs*: Probabilistic robustness is **not** at odds with accuracy
 - Linear regression
 - Mixture-of-Gaussians classification

▶ Sample complexity: PR can

Theoretical

- ▶ (*Lack of*) *Provable tradeoffs*: Probabilistic robustness is **not** at odds with accuracy
 - Linear regression
 - Mixture-of-Gaussians classification

- ▶ Sample complexity: PR can
 - ▶ match the sample complexity of ERM

Theoretical

- (*Lack of*) *Provable tradeoffs*: Probabilistic robustness is **not** at odds with accuracy
 - Linear regression
 - Mixture-of-Gaussians classification

- ▶ Sample complexity: PR can
 - ▶ match the sample complexity of ERM
 - be exponentially smaller than the sample complexity of adversarial training

Theoretical

- (*Lack of*) *Provable tradeoffs*: Probabilistic robustness is **not** at odds with accuracy
 - Linear regression
 - Mixture-of-Gaussians classification

- ▶ Sample complexity: PR can
 - ▶ match the sample complexity of ERM
 - be exponentially smaller than the sample complexity of adversarial training

- Outperform baselines:
 - MNIST, CIFAR-10, SVHN

Theoretical

- (*Lack of*) *Provable tradeoffs*: Probabilistic robustness is **not** at odds with accuracy
 - Linear regression
 - Mixture-of-Gaussians classification

- ▶ Sample complexity: PR can
 - ▶ match the sample complexity of ERM
 - be exponentially smaller than the sample complexity of adversarial training

- Outperform baselines:
 - MNIST, CIFAR-10, SVHN

Theoretical

- (*Lack of*) *Provable tradeoffs*: Probabilistic robustness is **not** at odds with accuracy
 - Linear regression
 - Mixture-of-Gaussians classification

- ▶ Sample complexity: PR can
 - ▶ match the sample complexity of ERM
 - be exponentially smaller than the sample complexity of adversarial training

Algorithmic

- Outperform baselines:
 - MNIST, CIFAR-10, SVHN

Any questions?

Alex Robey
arobey1@seas.upenn.edu