Skip to yearly menu bar Skip to main content


Spotlight

HyperPrompt: Prompt-based Task-Conditioning of Transformers

Yun He · Steven Zheng · Yi Tay · Jai Gupta · Yu Du · Vamsi Aribandi · Zhe Zhao · Yaguang Li · Zhao Chen · Don Metzler · Heng-Tze Cheng · Ed Chi

Room 318 - 320

Abstract:

Prompt-Tuning is a new paradigm for finetuning pre-trained language models in a parameter efficient way. Here, we explore the use of HyperNetworks to generate hyper-prompts: we propose HyperPrompt, a novel architecture for prompt-based task-conditioning of self-attention in Transformers. The hyper-prompts are end-to-end learnable via generation by a HyperNetwork. HyperPrompt allows the network to learn task-specific feature maps where the hyper-prompts serve astask global memories for the queries to attend to, at the same time enabling flexible information sharing among tasks. We show that HyperPrompt is competitive against strong multi-task learning baselines with as few as 0.14% of additional task-conditioning parameters, achieving great parameter and computational efficiency. Through extensive empirical experiments, we demonstrate that HyperPrompt can achieve superior performances over strong T5 multi-task learning baselines and parameter-efficient adapter variants including Prompt-Tuning and HyperFormer++ on Natural Language Understanding benchmarks of GLUE and SuperGLUE across many model sizes.

Chat is not available.