Social Aspects/MISC

Room 318 - 320

Moderator : Alexander Meinke

Wed 20 Jul 7:30 a.m. PDT — 9 a.m. PDT


Chat is not available.

Wed 20 July 7:30 - 7:35 PDT

Interpretable Neural Networks with Frank-Wolfe: Sparse Relevance Maps and Relevance Orderings

Jan Macdonald · Mathieu Besançon · Sebastian Pokutta

We study the effects of constrained optimization formulations and Frank-Wolfe algorithms for obtaining interpretable neural network predictions. Reformulating the Rate-Distortion Explanations (RDE) method for relevance attribution as a constrained optimization problem provides precise control over the sparsity of relevance maps. This enables a novel multi-rate as well as a relevance-ordering variant of RDE that both empirically outperform standard RDE and other baseline methods in a well-established comparison test. We showcase several deterministic and stochastic variants of the Frank-Wolfe algorithm and their effectiveness for RDE.

Wed 20 July 7:35 - 7:40 PDT

Label-Free Explainability for Unsupervised Models

Jonathan Crabbé · Mihaela van der Schaar

Unsupervised black-box models are challenging to interpret. Indeed, most existing explainability methods require labels to select which component(s) of the black-box's output to interpret. In the absence of labels, black-box outputs often are representation vectors whose components do not correspond to any meaningful quantity. Hence, choosing which component(s) to interpret in a label-free unsupervised/self-supervised setting is an important, yet unsolved problem. To bridge this gap in the literature, we introduce two crucial extensions of post-hoc explanation techniques: (1) label-free feature importance and (2) label-free example importance that respectively highlight influential features and training examples for a black-box to construct representations at inference time. We demonstrate that our extensions can be successfully implemented as simple wrappers around many existing feature and example importance methods. We illustrate the utility of our label-free explainability paradigm through a qualitative and quantitative comparison of representation spaces learned by various autoencoders trained on distinct unsupervised tasks.

Wed 20 July 7:40 - 7:45 PDT

Towards Theoretical Analysis of Transformation Complexity of ReLU DNNs

Jie Ren · Mingjie Li · Meng Zhou · Shih-Han Chan · Quanshi Zhang

This paper aims to theoretically analyze the complexity of feature transformations encoded in piecewise linear DNNs with ReLU layers. We propose metrics to measure three types of complexities of transformations based on the information theory. We further discover and prove the strong correlation between the complexity and the disentanglement of transformations. Based on the proposed metrics, we analyze two typical phenomena of the change of the transformation complexity during the training process, and explore the ceiling of a DNN's complexity. The proposed metrics can also be used as a loss to learn a DNN with the minimum complexity, which also controls the over-fitting level of the DNN and influences adversarial robustness, adversarial transferability, and knowledge consistency. Comprehensive comparative studies have provided new perspectives to understand the DNN. The code is released at

Wed 20 July 7:45 - 7:50 PDT

A Study of Face Obfuscation in ImageNet

Kaiyu Yang · Jacqueline Yau · Li Fei-Fei · Jia Deng · Olga Russakovsky

Face obfuscation (blurring, mosaicing, etc.) has been shown to be effective for privacy protection; nevertheless, object recognition research typically assumes access to complete, unobfuscated images. In this paper, we explore the effects of face obfuscation on the popular ImageNet challenge visual recognition benchmark. Most categories in the ImageNet challenge are not people categories; however, many incidental people appear in the images, and their privacy is a concern. We first annotate faces in the dataset. Then we demonstrate that face obfuscation has minimal impact on the accuracy of recognition models. Concretely, we benchmark multiple deep neural networks on obfuscated images and observe that the overall recognition accuracy drops only slightly (<= 1.0%). Further, we experiment with transfer learning to 4 downstream tasks (object recognition, scene recognition, face attribute classification, and object detection) and show that features learned on obfuscated images are equally transferable. Our work demonstrates the feasibility of privacy-aware visual recognition, improves the highly-used ImageNet challenge benchmark, and suggests an important path for future visual datasets. Data and code are available at

Wed 20 July 7:50 - 7:55 PDT

Fair Representation Learning through Implicit Path Alignment

Changjian Shui · Qi CHEN · Jiaqi Li · Boyu Wang · Christian Gagne

We consider a fair representation learning perspective, where optimal predictors, on top of the data representation, are ensured to be invariant with respect to different sub-groups. Specifically, we formulate this intuition as a bi-level optimization, where the representation is learned in the outer-loop, and invariant optimal group predictors are updated in the inner-loop. Moreover, the proposed bi-level objective is demonstrated to fulfill the sufficiency rule, which is desirable in various practical scenarios but was not commonly studied in the fair learning. Besides, to avoid the high computational and memory cost of differentiating in the inner-loop of bi-level objective, we propose an implicit path alignment algorithm, which only relies on the solution of inner optimization and the implicit differentiation rather than the exact optimization path. We further analyze the error gap of the implicit approach and empirically validate the proposed method in both classification and regression settings. Experimental results show the consistently better trade-off in prediction performance and fairness measurement.

Wed 20 July 7:55 - 8:00 PDT

Mitigating Neural Network Overconfidence with Logit Normalization

Hongxin Wei · RENCHUNZI XIE · Hao Cheng · LEI FENG · Bo An · Yixuan Li

Detecting out-of-distribution inputs is critical for the safe deployment of machine learning models in the real world. However, neural networks are known to suffer from the overconfidence issue, where they produce abnormally high confidence for both in- and out-of-distribution inputs. In this work, we show that this issue can be mitigated through Logit Normalization (LogitNorm)---a simple fix to the cross-entropy loss---by enforcing a constant vector norm on the logits in training. Our method is motivated by the analysis that the norm of the logit keeps increasing during training, leading to overconfident output. Our key idea behind LogitNorm is thus to decouple the influence of output’s norm during network optimization. Trained with LogitNorm, neural networks produce highly distinguishable confidence scores between in- and out-of-distribution data. Extensive experiments demonstrate the superiority of LogitNorm, reducing the average FPR95 by up to 42.30% on common benchmarks.

Wed 20 July 8:00 - 8:05 PDT

Learning fair representation with a parametric integral probability metric

Dongha Kim · Kunwoong Kim · Insung Kong · Ilsang Ohn · Yongdai Kim

As they have a vital effect on social decision-making, AI algorithms should be not only accurate but also fair. Among various algorithms for fairness AI, learning fair representation (LFR), whose goal is to find a fair representation with respect to sensitive variables such as gender and race, has received much attention. For LFR, the adversarial training scheme is popularly employed as is done in the generative adversarial network type algorithms. The choice of a discriminator, however, is done heuristically without justification. In this paper, we propose a new adversarial training scheme for LFR, where the integral probability metric (IPM) with a specific parametric family of discriminators is used. The most notable result of the proposed LFR algorithm is its theoretical guarantee about the fairness of the final prediction model, which has not been considered yet. That is, we derive theoretical relations between the fairness of representation and the fairness of the prediction model built on the top of the representation (i.e., using the representation as the input). Moreover, by numerical experiments, we show that our proposed LFR algorithm is computationally lighter and more stable, and the final prediction model is competitive or superior to other LFR algorithms using more complex discriminators.

Wed 20 July 8:05 - 8:25 PDT

Privacy for Free: How does Dataset Condensation Help Privacy?

Tian Dong · Bo Zhao · Lingjuan Lyu

To prevent unintentional data leakage, research community has resorted to data generators that can produce differentially private data for model training. However, for the sake of the data privacy, existing solutions suffer from either expensive training cost or poor generalization performance. Therefore, we raise the question whether training efficiency and privacy can be achieved simultaneously. In this work, we for the first time identify that dataset condensation (DC) which is originally designed for improving training efficiency is also a better solution to replace the traditional data generators for private data generation, thus providing privacy for free. To demonstrate the privacy benefit of DC, we build a connection between DC and differential privacy, and theoretically prove on linear feature extractors (and then extended to non-linear feature extractors) that the existence of one sample has limited impact ($O(m/n)$) on the parameter distribution of networks trained on $m$ samples synthesized from $n (n \gg m)$ raw samples by DC. We also empirically validate the visual privacy and membership privacy of DC-synthesized data by launching both the loss-based and the state-of-the-art likelihood-based membership inference attacks. We envision this work as a milestone for data-efficient and privacy-preserving machine learning.

Wed 20 July 8:25 - 8:30 PDT

Fair Generalized Linear Models with a Convex Penalty

Hyungrok Do · Preston Putzel · Axel Martin · Padhraic Smyth · Judy Zhong

Despite recent advances in algorithmic fairness, methodologies for achieving fairness with generalized linear models (GLMs) have yet to be explored in general, despite GLMs being widely used in practice. In this paper we introduce two fairness criteria for GLMs based on equalizing expected outcomes or log-likelihoods. We prove that for GLMs both criteria can be achieved via a convex penalty term based solely on the linear components of the GLM, thus permitting efficient optimization. We also derive theoretical properties for the resulting fair GLM estimator. To empirically demonstrate the efficacy of the proposed fair GLM, we compare it with other well-known fair prediction methods on an extensive set of benchmark datasets for binary classification and regression. In addition, we demonstrate that the fair GLM can generate fair predictions for a range of response variables, other than binary and continuous outcomes.

Wed 20 July 8:30 - 8:35 PDT

HyperPrompt: Prompt-based Task-Conditioning of Transformers

Yun He · Steven Zheng · Yi Tay · Jai Gupta · Yu Du · Vamsi Aribandi · Zhe Zhao · Yaguang Li · Zhao Chen · Don Metzler · Heng-Tze Cheng · Ed Chi

Prompt-Tuning is a new paradigm for finetuning pre-trained language models in a parameter efficient way. Here, we explore the use of HyperNetworks to generate hyper-prompts: we propose HyperPrompt, a novel architecture for prompt-based task-conditioning of self-attention in Transformers. The hyper-prompts are end-to-end learnable via generation by a HyperNetwork. HyperPrompt allows the network to learn task-specific feature maps where the hyper-prompts serve astask global memories for the queries to attend to, at the same time enabling flexible information sharing among tasks. We show that HyperPrompt is competitive against strong multi-task learning baselines with as few as 0.14% of additional task-conditioning parameters, achieving great parameter and computational efficiency. Through extensive empirical experiments, we demonstrate that HyperPrompt can achieve superior performances over strong T5 multi-task learning baselines and parameter-efficient adapter variants including Prompt-Tuning and HyperFormer++ on Natural Language Understanding benchmarks of GLUE and SuperGLUE across many model sizes.

Wed 20 July 8:35 - 8:40 PDT

Validating Causal Inference Methods

Harsh Parikh · Carlos Varjao · Louise Xu · Eric Tchetgen Tchetgen

The fundamental challenge of drawing causal inference is that counterfactual outcomes are not fully observed for any unit. Furthermore, in observational studies, treatment assignment is likely to be confounded. Many statistical methods have emerged for causal inference under unconfoundedness conditions given pre-treatment covariates, including propensity score-based methods, prognostic score-based methods, and doubly robust methods. Unfortunately for applied researchers, there is no `one-size-fits-all' causal method that can perform optimally universally. In practice, causal methods are primarily evaluated quantitatively on handcrafted simulated data. Such data-generative procedures can be of limited value because they are typically stylized models of reality. They are simplified for tractability and lack the complexities of real-world data. For applied researchers, it is critical to understand how well a method performs for the data at hand. Our work introduces a deep generative model-based framework, Credence, to validate causal inference methods. The framework's novelty stems from its ability to generate synthetic data anchored at the empirical distribution for the observed sample, and therefore virtually indistinguishable from the latter. The approach allows the user to specify ground truth for the form and magnitude of causal effects and confounding bias as functions of covariates. Thus simulated data sets are used to evaluate the potential performance of various causal estimation methods when applied to data similar to the observed sample. We demonstrate Credence's ability to accurately assess the relative performance of causal estimation techniques in an extensive simulation study and two real-world data applications from Lalonde and Project STAR studies.

Wed 20 July 8:40 - 8:45 PDT

The Multivariate Community Hawkes Model for Dependent Relational Events in Continuous-time Networks

Hadeel Soliman · Lingfei Zhao · Zhipeng Huang · Subhadeep Paul · Kevin Xu

The stochastic block model (SBM) is one of the most widely used generative models for network data. Many continuous-time dynamic network models are built upon the same assumption as the SBM: edges or events between all pairs of nodes are conditionally independent given the block or community memberships, which prevents them from reproducing higher-order motifs such as triangles that are commonly observed in real networks. We propose the multivariate community Hawkes (MULCH) model, an extremely flexible community-based model for continuous-time networks that introduces dependence between node pairs using structured multivariate Hawkes processes. We fit the model using a spectral clustering and likelihood-based local refinement procedure. We find that our proposed MULCH model is far more accurate than existing models both for predictive and generative tasks.

Wed 20 July 8:45 - 8:50 PDT

Scalable Deep Gaussian Markov Random Fields for General Graphs

Joel Oskarsson · Per Sidén · Fredrik Lindsten

Machine learning methods on graphs have proven useful in many applications due to their ability to handle generally structured data. The framework of Gaussian Markov Random Fields (GMRFs) provides a principled way to define Gaussian models on graphs by utilizing their sparsity structure. We propose a flexible GMRF model for general graphs built on the multi-layer structure of Deep GMRFs, originally proposed for lattice graphs only. By designing a new type of layer we enable the model to scale to large graphs. The layer is constructed to allow for efficient training using variational inference and existing software frameworks for Graph Neural Networks. For a Gaussian likelihood, close to exact Bayesian inference is available for the latent field. This allows for making predictions with accompanying uncertainty estimates. The usefulness of the proposed model is verified by experiments on a number of synthetic and real world datasets, where it compares favorably to other both Bayesian and deep learning methods.

Wed 20 July 8:50 - 8:55 PDT

Anytime Information Cascade Popularity Prediction via Self-Exciting Processes

Xi Zhang · Akshay Aravamudan · Georgios Anagnostopoulos

One important aspect of understanding behaviors of information cascades is to be able to accurately predict their popularity, that is, their message counts at any future time. Self-exciting Hawkes processes have been widely adopted for such tasks due to their success in describing cascading behaviors. In this paper, for general, marked Hawkes point processes, we present closed-form expressions for the mean and variance of future event counts, conditioned on observed events. Furthermore, these expressions allow us to develop a predictive approach, namely, Cascade Anytime Size Prediction via self-Exciting Regression model (CASPER), which is specifically tailored to popularity prediction, unlike existing generative approaches – based on point processes – for the same task. We showcase CASPER’s merits via experiments entailing both synthetic and real-world data, and demonstrate that it considerably improves upon prior works in terms of accuracy, especially for early-stage prediction.

Wed 20 July 8:55 - 9:00 PDT

Deep Variational Graph Convolutional Recurrent Network for Multivariate Time Series Anomaly Detection

Wenchao Chen · Long Tian · Bo Chen · Liang Dai · Zhibin Duan · Mingyuan Zhou

Anomaly detection within multivariate time series (MTS) is an essential task in both data mining and service quality management. Many recent works on anomaly detection focus on designing unsupervised probabilistic models toextract robust normal patterns of MTS. In this paper, we model sensor dependency and stochasticity within MTS by developing an embedding-guided probabilistic generative network. We combine it with adaptive variational graph convolutional recurrent network %and get variational GCRN (VGCRN) to model both spatial and temporal fine-grained correlations in MTS. To explore hierarchical latent representations, we further extend VGCRN into a deep variational network, which captures multilevel information at different layers and is robust to noisy time series. Moreover, we develop an upward-downward variational inference scheme that considers both forecasting-based and reconstruction-based losses, achieving an accurate posterior approximation of latent variables with better MTS representations. The experiments verify the superiority of the proposed method over current state-of-the-art methods.