

TEXAS A&M
UNIVERSITY.

HyperPrompt: Prompt-based Task-Conditioning of Transformers

Yun He^{*1} Huaixiu Steven Zheng^{*2}

Yi Tay² Jai Gupta² Yu Du² Vamsi Aribandi²

Zhe Zhao² YaGuang Li² Zhao Chen³

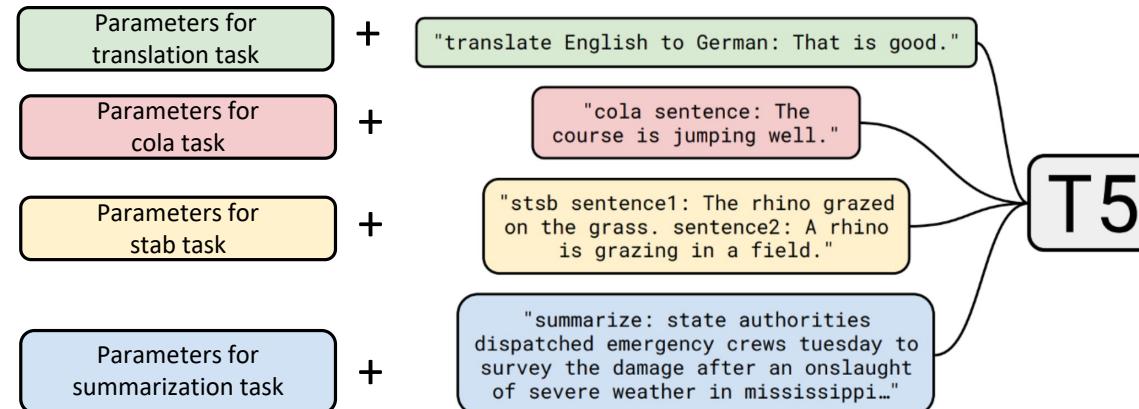
Donald Metzler² Heng-Tze Cheng² Ed H. Chi²

^{*}Equal contribution ¹Texas A&M University

²Google Research ³Waymo LLC

Task-Conditioning of Transformers for MTL

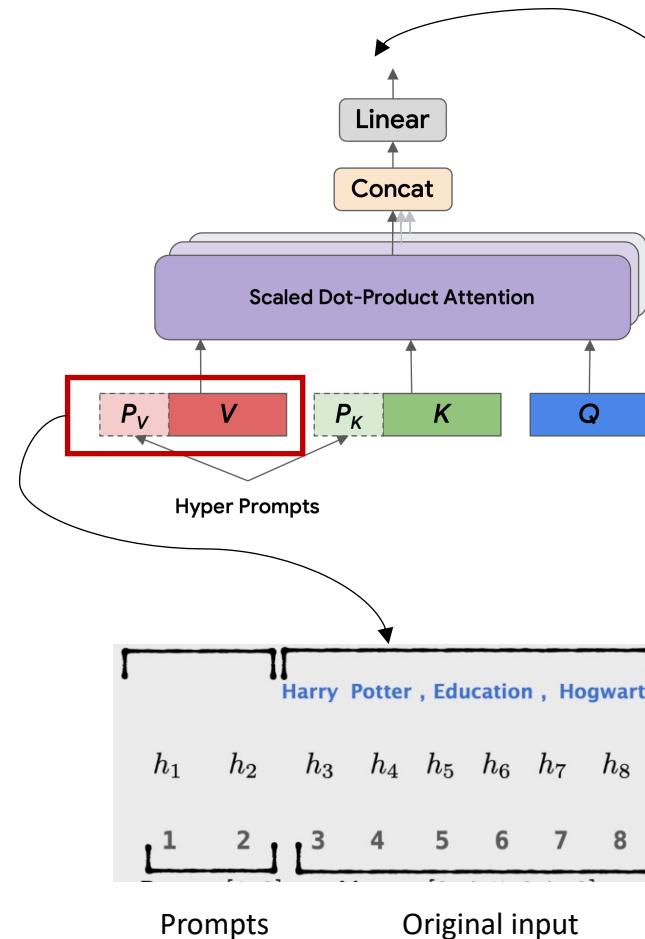
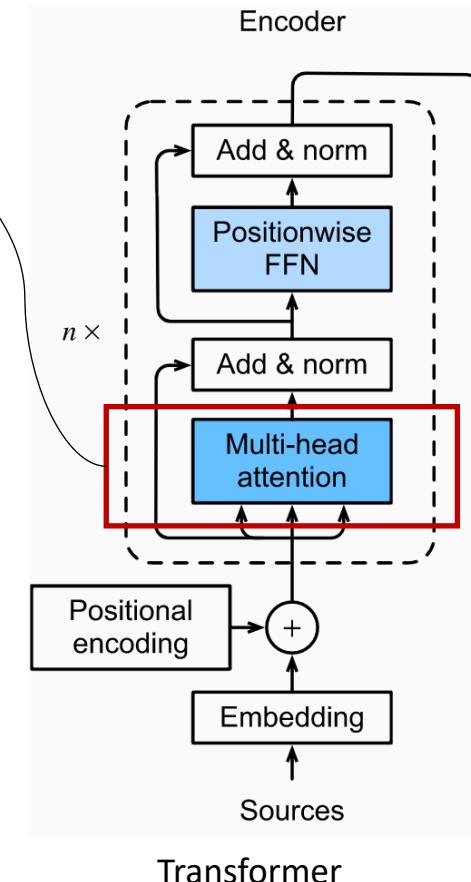
- Multi-task learning (MTL) on Transformers
 - Pros: more **parameter-efficient** than single-task learning
 - Cons: the **task interference** is inevitable in fitting all task data sets within **a single set** of parameters.
- **Research Question:** how to alleviate the task interference for Transformer-based MTL?
 - Each task has its own task-conditioned parameters, which are **only updated by the corresponding task loss** and hence will **not be interfered by other tasks**.



- **Goal 1:** inject task-conditioned parameters into Transformer.
- **Goal 2:** task-conditioned parameters should be **space-efficient**.

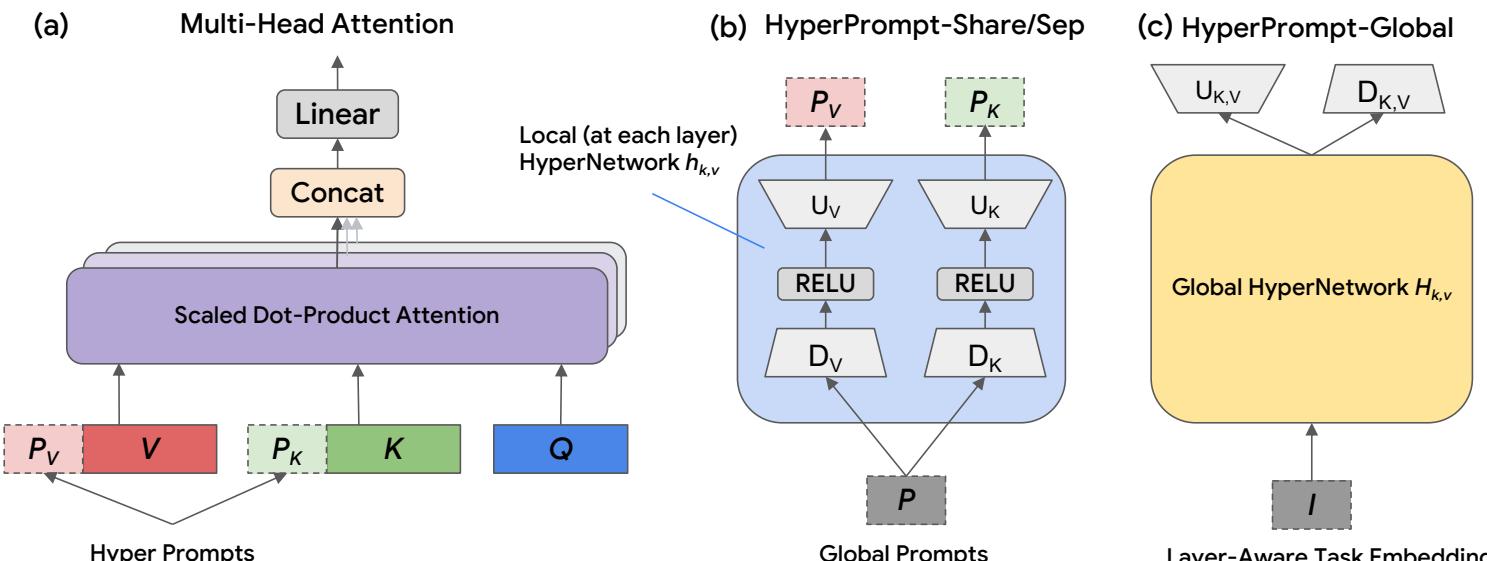
Proposed Methods: HyperPrompt

- Which module of a Transformer should we inject the task-conditioned parameters for MTL?
 - Previous work¹² focus on feed-forward network (FFN).
- Key difference from previous work:
 - Self-attention is better than FFN to have task-conditioned parameters.
- We inject hyper-prompts (learnable embeddings) into Transformer's self-attention modules.
 - Hyper-prompts serve as task-dependent global memories for the queries to attend to.



HyperNetworks Generate Hyper-Prompts

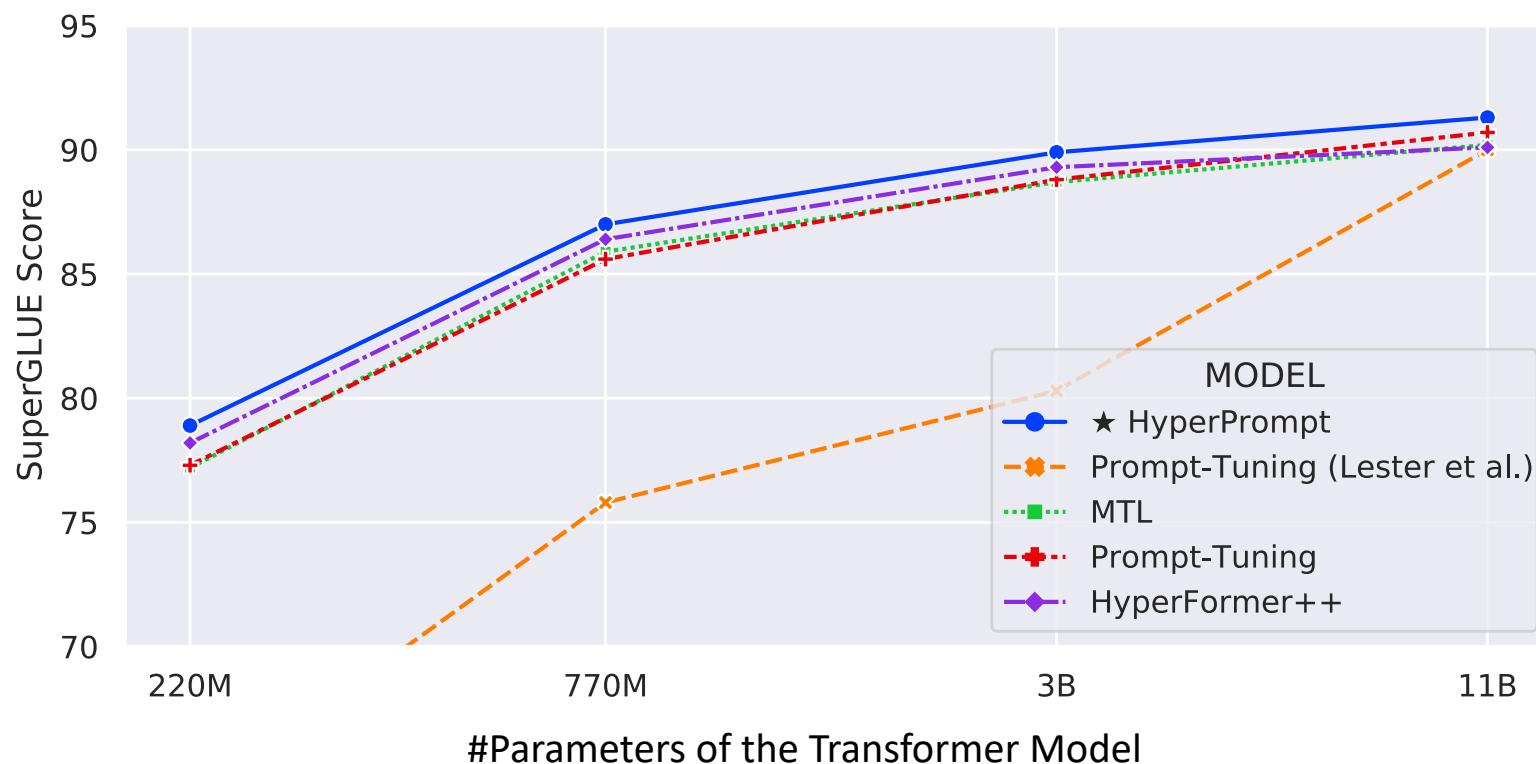
- In prompt-tuning¹, prompts are directly initialized
- Key technical contribution:
 - Fig(b): at each layer of a Transformer, **local HyperNetworks** generate the hyper-prompts.
 - Fig(c): a **global HyperNetwork** generates the local HyperNetworks, which enables **the flexible knowledge transfer between tasks and layers**.
 - HyperNetworks also enables hyper-prompts to be **parameter-efficient**.



Framework of HyperPrompt

Key Results

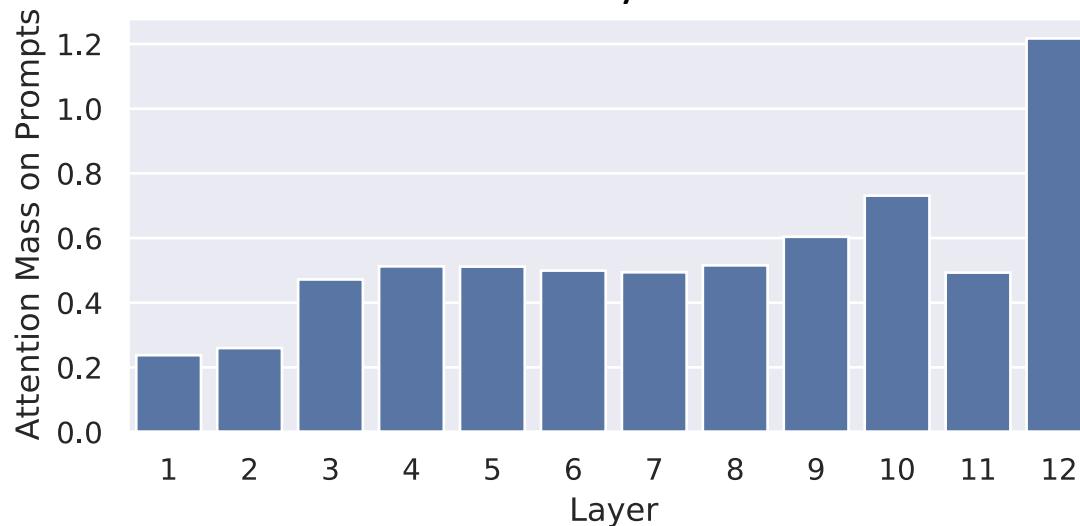
- T5 is the base Transformer model and HyperPrompt and baseline methods are applied on top of the base model. HyperPrompt achieves the **SOTA** performance on SuperGLUE **across four different model sizes**.



- HyperPrompt vs. Prompt-Tuning
 - Hyper-prompts are generated by HyperNetworks, allowing **flexible knowledge transfer** between tasks and layers.

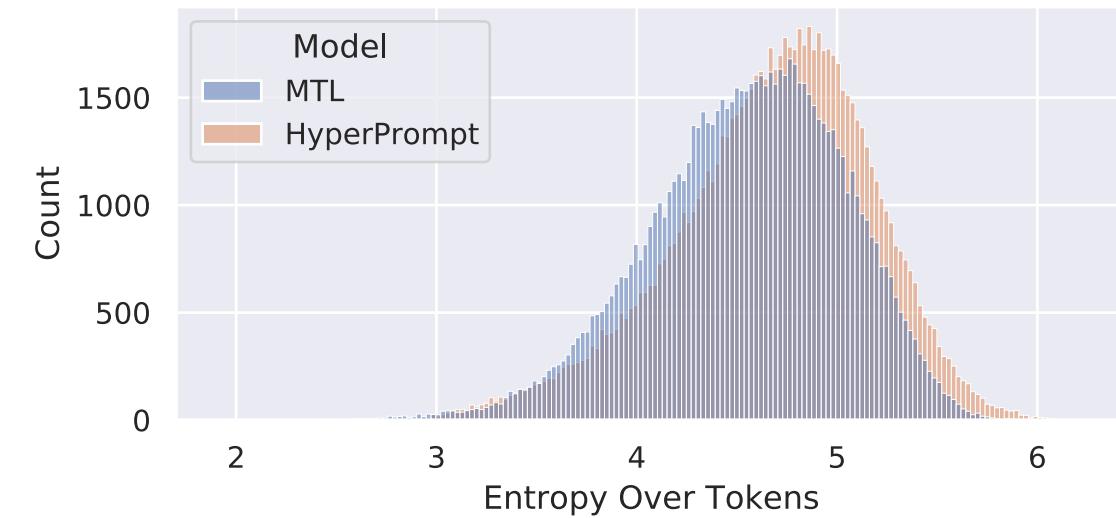
Peeking into HyperPrompt

Fig 1. The attention mass on hyper-prompts for each encoder layer



Higher-levels of Transformer becomes more task-specialized while it is beneficial for the lower-levels to learn task-agnostic representation.

Fig 2. The entropy of the attention scores on the tokens



A shift of entropy distribution towards higher values for HyperPrompt, showing that injecting hyper-prompts encourages a more diverse attention distribution.

Highlights

- We introduce hyper-prompts as task-conditioned parameters to **alleviate the task interference and conflicts** for multi-task learning on Transformers.
- Key differences between HyperPrompt and previous work:
 1. Hyper-prompts are injected into the **self-attention** module, which is a better place for task-conditioning than feed-forward module.
 2. **Tuning all parameters** is better than freezing backbone model.
- Key technical contribution: the hyper-prompts are end-to-end learnable via generation by **HyperNetworks**, enabling **flexible** knowledge sharing among tasks and layers.
- HyperPrompt **outperforms the strong MTL baseline** by a large margin on SuperGLUE score (78.9 vs 77.2 for T5 Base). Such a performance gain continues all the way to model size as big as XXL with 11B parameters (91.3 vs 90.2) with **only 0.14%** additional task-conditioned parameters.