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Task-Conditioning of Transformers for MTL

* Multi-task learning (MTL) on Transformers
* Pros: more parameter-efficient than single-task learning
* Cons: the task interference is inevitable in fitting all task data sets within a single set of parameters.

* Research Question: how to alleviate the task interference for Transformer-based MTL?
e Each task has its own task-conditioned parameters, which are only updated by the corresponding task loss
and hence will not be interfered by other tasks.
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 Goal 1: inject task-conditioned parameters into Transformer.
* Goal 2: task-conditioned parameters should be space-efficient.



Proposed Methods: HyperPrompt
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HyperNetworks Generate Hyper-Prompts

* In prompt-tuning?, prompts are directly initialized

* Key technical contribution:

* Fig(b): at each layer of a Transformer, local HyperNetworks generate the hyper-prompts.

* Fig(c): a global HyperNetwork generates the local HyperNetworks, which enables the flexible knowledge

transfer between tasks and layers.

* HyperNetworks also enables hyper-prompts to be parameter-efficient.
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Key Results

 T5is the base Transformer model and HyperPrompt and baseline methods are applied
on top of the base model. HyperPrompt achieves the SOTA performance on SuperGLUE
across four different model sizes.
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* HyperPrompt vs. Prompt-Tuning

Hyper-prompts are generated
by HyperNetworks, allowing
flexible knowledge transfer
between tasks and layers.



Peeking into HyperPrompt

Fig 1. The attention mass on hyper-prompts for each Fig 2. The entropy of the attention scores on the tokens
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Higher-levels of Transformer becomes more task- A shift of entropy distribution towards higher
specialized while it is beneficial for the lower-levels to learn values for HyperPrompt, showing that
task-agnostic representation. injecting hyper-prompts encourages a more

diverse attention distribution.



Highlights

We introduce hyper-prompts as task-conditioned parameters to alleviate the task
interference and conflicts for multi-task learning on Transformers.

Key differences between HyperPrompt and previous work:

1. Hyper-prompts are injected into the self-attention module, which is a better place for task-
conditioning than feed-forward module.

2. Tuning all parameters is better than freezing backbone model.

Key technical contribution: the hyper-prompts are end-to-end learnable via generation
by HyperNetworks, enabling flexible knowledge sharing among tasks and layers.

HyperPrompt outperforms the strong MTL baseline by a large margin on SuperGLUE
score (78.9 vs 77.2 for T5 Base). Such a performance gain continues all the way to
model size as big as XXL with 1lB parameters (91.3 vs 90.2) with only 0.14% additional
task-conditioned parameters.



