Skip to yearly menu bar Skip to main content


Oral

Oral 1E Time Series

Straus 1-3
Tue 23 Jul 1:30 a.m. PDT — 2:30 a.m. PDT
Abstract:
Chat is not available.

Tue 23 July 1:30 - 1:45 PDT

SparseTSF: Modeling Long-term Time Series Forecasting with *1k* Parameters

Shengsheng Lin · Weiwei Lin · Wentai Wu · Haojun Chen · Junjie Yang

This paper introduces SparseTSF, a novel, extremely lightweight model for Long-term Time Series Forecasting (LTSF), designed to address the challenges of modeling complex temporal dependencies over extended horizons with minimal computational resources. At the heart of SparseTSF lies the Cross-Period Sparse Forecasting technique, which simplifies the forecasting task by decoupling the periodicity and trend in time series data. This technique involves downsampling the original sequences to focus on cross-period trend prediction, effectively extracting periodic features while minimizing the model's complexity and parameter count. Based on this technique, the SparseTSF model uses fewer than 1k parameters to achieve competitive or superior performance compared to state-of-the-art models. Furthermore, SparseTSF showcases remarkable generalization capabilities, making it well-suited for scenarios with limited computational resources, small samples, or low-quality data. The code is publicly available at this repository: https://github.com/lss-1138/SparseTSF.

Tue 23 July 1:45 - 2:00 PDT

Arrows of Time for Large Language Models

Vassilis Papadopoulos · Jérémie Wenger · Clement Hongler

We study the probabilistic modeling performed by Autoregressive Large Language Models (LLMs) through the angle of time directionality, addressing a question first raised in (Shannon, 1951). For large enough models, we empirically find a time asymmetry in their ability to learn natural language: a difference in the average log-perplexity when trying to predict the next token versus when trying to predict the previous one. This difference is at the same time subtle and very consistent across various modalities (language, model size, training time, ...). Theoretically, this is surprising: from an information-theoretic point of view, there should be no such difference. We provide a theoretical framework to explain how such an asymmetry can appear from sparsity and computational complexity considerations, and outline a number of perspectives opened by our results.

Tue 23 July 2:00 - 2:15 PDT

Unified Training of Universal Time Series Forecasting Transformers

Gerald Woo · Chenghao Liu · Akshat Kumar · Caiming Xiong · Silvio Savarese · Doyen Sahoo

Deep learning for time series forecasting has traditionally operated within a one-model-per-dataset framework, limiting its potential to leverage the game-changing impact of large pre-trained models. The concept of universal forecasting, emerging from pre-training on a vast collection of time series datasets, envisions a single Large Time Series Model capable of addressing diverse downstream forecasting tasks. However, constructing such a model poses unique challenges specific to time series data: (i) cross-frequency learning, (ii) accommodating an arbitrary number of variates for multivariate time series, and (iii) addressing the varying distributional properties inherent in large-scale data. To address these challenges, we present novel enhancements to the conventional time series Transformer architecture, resulting in our proposed Masked Encoder-based Universal Time Series Forecasting Transformer (Moirai). Trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains, Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models. Code, data, and model weights can be found at https://github.com/SalesforceAIResearch/uni2ts.

Tue 23 July 2:15 - 2:30 PDT

SAMformer: Unlocking the Potential of Transformers in Time Series Forecasting with Sharpness-Aware Minimization and Channel-Wise Attention

Romain Ilbert · Ambroise Odonnat · Vasilii Feofanov · Aladin Virmaux · Giuseppe Paolo · Themis Palpanas · Ievgen Redko

Transformer-based architectures achieved breakthrough performance in natural language processing and computer vision, yet they remain inferior to simpler linear baselines in multivariate long-term forecasting. To better understand this phenomenon, we start by studying a toy linear forecasting problem for which we show that transformers are incapable of converging to their true solution despite their high expressive power. We further identify the attention of transformers as being responsible for this low generalization capacity. Building upon this insight, we propose a shallow lightweight transformer model that successfully escapes bad local minima when optimized with sharpness-aware optimization. We empirically demonstrate that this result extends to all commonly used real-world multivariate time series datasets. In particular, SAMformer surpasses current state-of-the-art methods and is on par with the biggest foundation model MOIRAI while having significantly fewer parameters. The code is available at https://github.com/romilbert/samformer.