Skip to yearly menu bar Skip to main content


Poster

Distributed Bilevel Optimization with Communication Compression

Yutong He · Jie Hu · Xinmeng Huang · Songtao Lu · Bin Wang · Kun Yuan

Hall C 4-9 #2300
[ ] [ Paper PDF ]
[ Poster
Thu 25 Jul 4:30 a.m. PDT — 6 a.m. PDT

Abstract: Stochastic bilevel optimization tackles challenges involving nested optimization structures. Its fast-growing scale nowadays necessitates efficient distributed algorithms. In conventional distributed bilevel methods, each worker must transmit full-dimensional stochastic gradients to the server every iteration, leading to significant communication overhead and thus hindering efficiency and scalability. To resolve this issue, we introduce the **first** family of distributed bilevel algorithms with communication compression. The primary challenge in algorithmic development is mitigating bias in hypergradient estimation caused by the nested structure. We first propose C-SOBA, a simple yet effective approach with unbiased compression and provable linear speedup convergence. However, it relies on strong assumptions on bounded gradients. To address this limitation, we explore the use of moving average, error feedback, and multi-step compression in bilevel optimization, resulting in a series of advanced algorithms with relaxed assumptions and improved convergence properties. Numerical experiments show that our compressed bilevel algorithms can achieve $10\times$ reduction in communication overhead without severe performance degradation.

Chat is not available.