Skip to yearly menu bar Skip to main content


Poster

Robust $\phi$-Divergence Reinforcement Learning Using Offline and Online Data

Kishan Panaganti · Adam Wierman · Eric Mazumdar


Abstract: The robust $\phi$-regularized Markov Decision Process (RRMDP) framework focuses on designing control policies that are robust against parameter uncertainties due to mismatches between the simulator (nominal) model and real-world settings. This work makes two important contributions. First, we propose a model-free algorithm called Robust $\phi$-regularized fitted Q-iteration (RPQ) for learning an $\epsilon$-optimal robust policy that uses only the historical data collected by rolling out a behavior policy (with robust exploratory requirement) on the nominal model. To the best of our knowledge, we provide the first unified analysis for a class of $\phi$-divergences achieving robust optimal policies in high-dimensional systems with general function approximation. Second, we introduce the hybrid robust $\phi$-regularized reinforcement learning framework to learn an optimal robust policy using both historical data and online sampling. Towards this framework, we propose a model-free algorithm called Hybrid robust Total-variation-regularized Q-iteration (HyTQ: pronounced height-Q). Finally, we provide theoretical guarantees on the performance of the learned policies of our algorithms on systems with arbitrary large state space using function approximation.

Live content is unavailable. Log in and register to view live content