Skip to yearly menu bar Skip to main content


Poster

KernelSHAP-IQ: Weighted Least Square Optimization for Shapley Interactions

Fabian Fumagalli · Maximilian Muschalik · Patrick Kolpaczki · Eyke Hüllermeier · CITEC Barbara Hammer

Hall C 4-9 #1708
[ ] [ Paper PDF ]
[ Poster
Tue 23 Jul 4:30 a.m. PDT — 6 a.m. PDT

Abstract:

The Shapley value (SV) is a prevalent approach of allocating credit to machine learning (ML) entities to understand black box ML models. Enriching such interpretations with higher-order interactions is inevitable for complex systems, where the Shapley Interaction Index (SII) is a direct axiomatic extension of the SV. While it is well-known that the SV yields an optimal approximation of any game via a weighted least square (WLS) objective, an extension of this result to SII has been a long-standing open problem, which even led to the proposal of an alternative index. In this work, we characterize higher-order SII as a solution to a WLS problem, which constructs an optimal approximation via SII and k-Shapley values (k-SII). We prove this representation for the SV and pairwise SII and give empirically validated conjectures for higher orders. As a result, we propose KernelSHAP-IQ, a direct extension of KernelSHAP for SII, and demonstrate state-of-the-art performance for feature interactions.

Chat is not available.