Skip to yearly menu bar Skip to main content


Poster

Gibbs Sampling of Continuous Potentials on a Quantum Computer

Arsalan Motamedi · Pooya Ronagh


Abstract:

Gibbs sampling from continuous real-valued functions is a challenging problem of interest in machine learning. Here we leverage quantum Fourier transforms to build a quantum algorithm for this task when the function is periodic. We use the quantum algorithms for solving linear ordinary differential equations to solve the Fokker–Planck equation and prepare a quantum state encoding the Gibbs distribution. We show that the efficiency of interpolation and differentiation of these functions on a quantum computer depends on the rate of decay of the Fourier coefficients of the Fourier transform of the function. We view this property as a concentration of measure in the Fourier domain, and also provide functional analytic conditions for it. Our algorithm makes zeroeth order queries to a quantum oracle of the function and achieves polynomial quantum speedups in mean estimation in the Gibbs measure for generic non-convex periodic functions. At high temperatures the algorithm also allows for exponentially improved precision in sampling from Morse functions.

Live content is unavailable. Log in and register to view live content