Gibbs Sampling of Continuous Potentials on a Quantum Computer

<u>Arsalan Motamedi</u>, Pooya Ronagh {arsalan.motamedi, pooya.ronagh}@uwaterloo.ca

Problem. Given an 'energy' function $E : \mathbb{R}^d \to \mathbb{R}$, generate samples from the corresponding Gibbs distribution

$$p(x) = \frac{e^{-\beta E(x)}}{Z_{\beta}}$$

image source: istockphoto.com

Problem. Given an 'energy' function $E : \mathbb{R}^d \to \mathbb{R}$, generate samples from the corresponding Gibbs distribution

$$p(x) = \frac{e^{-\beta E(x)}}{Z_{\beta}}$$

Applications.

Optimization

Problem. Given an 'energy' function $E : \mathbb{R}^d \to \mathbb{R}$, generate samples from the corresponding Gibbs distribution

Applications.

Optimization

Training EBMs

Problem. Given an 'energy' function $E : \mathbb{R}^d \to \mathbb{R}$, generate samples from the corresponding Gibbs distribution

Applications.

Optimization

Training EBMs

https://medium.com/

Results

Method	Potential type	Sampling complexity	Mean estimation complexity
Our work	non-convex periodic	$\widetilde{O}\left(\kappa_{E/2}e^{\Delta/2}d^7\right)$	$\widetilde{O}\left(\kappa_{E/2}e^{\Delta/2}d^{7}\Delta_{f}\varepsilon^{-1}\right)$
Rejection sampling	non-convex	$O\left(e^{\Delta} ight)$	$O\left(e^{\Delta}\Delta_{f}^{2}\varepsilon^{-2} ight)$
Our work	Morse and periodic	$\widetilde{O}\left(\lambda^{-2}e^{\Delta/2}d^7 ight)$	$\widetilde{O}\left(\lambda^{-2}e^{\Delta/2}d^{7}\Delta_{f}\varepsilon^{-1} ight)$
[LE20]	Morse and periodic	$\widetilde{O}\left(\lambda^{-4}L^4d^3\varepsilon^{-2} ight)$	$\widetilde{O}\left(\lambda^{-4}L^4d^3\Delta_f^2\varepsilon^{-4}\right)$
[DCWY18]	convex	$\widetilde{O}\left(L^2 d^3 \varepsilon^{-2}\right)$	$\widetilde{O}\left(L^2 d^3 \Delta_f^2 \varepsilon^{-4}\right)$
[CLL+22]	strongly convex	$\widetilde{O}\left(\mu^{-1/2}L^{1/2}d\right)$	$)\widetilde{O}\left(\mu^{-1/2}L^{1/2}d\Delta_{f}\varepsilon^{-1} ight)$
[LST20]	strongly convex	$\widetilde{O}\left(\mu^{-1}Ld\right)$	$\widetilde{O}\left(\mu^{-1}Ld\Delta_{f}^{2}\varepsilon^{-2} ight)$

Techniques: main idea

SDE PDE Langevin dynamics Fokker–Planck equation Good for classical computers Good for quantum computers Ŵ E(x) $\partial_t p_t = \nabla(e^{-E}\nabla(e^E p_t))$ $\mathrm{d}X_t = -\nabla E(X_t) + \sqrt{2}\,\mathrm{d}W_t$

- Due to recent quantum algorithms, we can efficiently solve differential equations over exponentially many points [CPO21]
- Normalization constant comes at the cost of post-selection → relates to mixing time!

Techniques: interpolation

```
Theorem. We can quantumly interpolate
```

```
N point discretization \mapsto e^{\Omega(N)} point discretization
```

with **poly(N)** gate complexity.

Techniques: interpolation

Theorem. We can quantumly interpolate

```
N point discretization \mapsto e^{\Omega(N)} point discretization
```

with **poly(N)** gate complexity.

Thank You!