Gibbs Sampling of Continuous Potentials on a Quantum Computer

Arsalan Motamedi, Pooya Ronagh {arsalan.motamedi, pooya.ronagh}@uwaterloo.ca

Problem. Given an 'energy' function $E : \mathbb{R}^d \to \mathbb{R}$, generate samples from the corresponding Gibbs distribution

$$
p(x) = \frac{e^{-\beta E(x)}}{Z_{\beta}}
$$

image source: istockphoto.com

Problem. Given an 'energy' function $E : \mathbb{R}^d \to \mathbb{R}$, generate samples from the corresponding Gibbs distribution

$$
p(x) = \frac{e^{-\beta E(x)}}{Z_{\beta}}
$$

Applications.

Optimization

Problem. Given an 'energy' function $E : \mathbb{R}^d \to \mathbb{R}$, generate samples from the corresponding Gibbs distribution

Applications.

Optimization

Training EBMs

Problem. Given an 'energy' function $E : \mathbb{R}^d \to \mathbb{R}$, generate samples from the corresponding Gibbs distribution

Applications.

Optimization

Training EBMs

https://medium.com/

Results

Techniques: main idea

SDE PDE Langevin dynamics Fokker–Planck equation Good for classical computers Good for quantum computers $\dot{\textbf{W}}$ $E(x)$ $\partial_t p_t = \nabla (e^{-E} \nabla (e^E p_t))$ $dX_t = -\nabla E(X_t) + \sqrt{2} \, dW_t$

- Due to recent quantum algorithms, we can efficiently solve differential equations over exponentially many points [CPO21]
- Normalization constant comes at the cost of post-selection \rightarrow relates to mixing time!

Techniques: interpolation

```
Theorem. We can quantumly interpolate
```

```
N point discretization \mapsto e^{\Omega(N)} point discretization
```
with **poly(N)** gate complexity.

Techniques: interpolation

Theorem. We can quantumly interpolate

N point discretization $\mapsto e^{\Omega(N)}$ point discretization

with **poly(N)** gate complexity.

Thank You!