Poster
in
Workshop: ES-FoMo II: 2nd Workshop on Efficient Systems for Foundation Models
LAuReL: Learned Augmented Residual Layer
Gaurav Menghani · Ravi Kumar · Sanjiv Kumar
One of the core pillars of efficient deep learning methods is architectural improvements such as the residual/skip connection (He et al.), which has led to significantly better model convergence and quality. Since then the residual connection has become ubiquitous in not just convolutional neural networks but also transformer-based architectures, the backbone of LLMs.In this paper we introduce a Learned Augmented Residual Layer (LAUREL)—a novel generalization of the canonical residual connection—with the goal to be an in-situ replacement of the latter while outperforming on both model quality and footprint metrics. Our experiments show that using LAUREL can help boost performance for both vision and language models. For example, on the ResNet-50, ImageNet 1K task, it achieves 60% of the gains from adding an extra layer, while only adding 0.003% more parameters, and matches it while adding 2.6x fewer parameters