Skip to yearly menu bar Skip to main content


Poster
in
Workshop: 2nd Workshop on Generative AI and Law (GenLaw ’24)

Computational Copyright: Towards A Royalty Model for Music Generative AI

Junwei Deng · Shiyuan Zhang · Jiaqi Ma


Abstract:

The advancement of generative AI has given rise to pressing copyright challenges, especially within the music industry. This paper focuses on the economic aspects of these challenges, emphasizing that the economic impact constitutes a central issue in the copyright arena. Furthermore, the complexity of the black-box generative AI technologies not only suggests but necessitates algorithmic solutions. Yet, such solutions have been largely missing, exacerbating regulatory hurdles in this landscape. We seek to address this gap by proposing viable royalty models for revenue sharing on AI music generation platforms. We start by examining existing royalty models utilized by platforms like Spotify and YouTube, and then discuss how to adapt them to the unique context of AI-generated music. A significant challenge emerging from this adaptation is the attribution of AI-generated music to influential copyrighted content in the training data. To this end, we present algorithmic solutions employing data attribution techniques. We also conduct a range of experiments to verify the effectiveness and robustness of these solutions. This research is one of the early attempts to integrate technical advancements with economic and legal considerations in the field of music generative AI, offering a computational copyright solution for the challenges posed by the opaque nature of AI technologies.

Chat is not available.