Skip to yearly menu bar Skip to main content


Poster
in
Workshop: Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators, and Simulators

Differentiable Mapper for Topological Optimization of Data Representation

Ziyad Oulhaj · Mathieu Carrière · Bertrand Michel

Keywords: [ Mapper Graph ] [ Optimization ] [ Persistent Homology ] [ Data Visualization ] [ topological data analysis ]


Abstract:

Unsupervised data representation and visualization using tools from topology is an active and growing field of Topological Data Analysis (TDA) and data science. Its most prominent line of work is based on the so-called Mapper graph, which is a combinatorial graph whose topological structures (connected components, branches, loops) are in correspondence with those of the data itself. While highly generic and applicable, its use has been hampered so far by the manual tuning of its many parameters—among these, a crucial one is the so-called filter: it is a continuous function whose variations on the data set are the main ingredient for both building the Mapper representation and assessing the presence and sizes of its topological structures. However, there is currently no method for tuning the filter itself. In this work, we build on a recently proposed optimization framework incorporating topology to provide the first filter optimization scheme for Mapper graphs. In order to achieve this, we propose a relaxed and more general version of the Mapper graph, whose convergence properties are investigated.

Chat is not available.