Skip to yearly menu bar Skip to main content


Poster
in
Workshop: AI for Science: Scaling in AI for Scientific Discovery

Smoke and Mirrors in Causal Downstream Tasks

Riccardo Cadei · Lukas Lindorfer · Sylvia Cremer · Cordelia Schmid · Francesco Locatello

Keywords: [ Representation Learning ] [ Randomized Controlled Trial ] [ AI For Science ] [ Causal Inference ]


Abstract:

Machine Learning and AI have the potential to transform data-driven scientific discovery, enabling accurate predictions for several scientific phenomena. As many scientific questions are inherently causal, this paper looks at the causal inference task of treatment effect estimation, where we assume binary effects that are recorded as high-dimensional images in a Randomized Controlled Trial (RCT). Despite being the simplest possible setting and a perfect fit for deep learning, we theoretically find that many common choices in the literature may lead to biased estimates. To test the practical impact of these considerations, we recorded the first real-world benchmark for causal inference downstream tasks on high-dimensional observations as an RCT studying how garden ants (Lasius neglectus) respond to microparticles applied onto their colony members by hygienic grooming. Comparing 6 480 models fine-tuned from state-of-the-art visual backbones, we find that the sampling and modeling choices significantly affect the accuracy of the causal estimate, and that classification accuracy is not a proxy thereof. We further validated the analysis, repeating it on a synthetically generated visual data set controlling the causal model. Our results suggest that future benchmarks should carefully consider real downstream scientific questions, especially causal ones. Further, we highlight guidelines for representation learning methods to help answer causal questions in the sciences. All code and data will be released.

Chat is not available.