Poster
in
Workshop: Data-centric Machine Learning Research (DMLR): Datasets for Foundation Models
Data Mixture Inference Attack: BPE Tokenizers Reveal Training Data Compositions
Jonathan Hayase · Alisa Liu · Yejin Choi · Sewoong Oh · Noah Smith
The pretraining data of today's strongest language models remains opaque, even when their parameters are open-sourced. In particular, little is known about the proportions of different domains, languages, or code represented in the data. While a long line of membership inference attacks aim to identify training examples on an instance level, they do not extend easily to global statistics about the corpus. In this work, we tackle a task which we call data mixture inference, which aims to uncover the distributional make-up of the pretraining data. We introduce a novel attack based on a previously overlooked source of information — byte-pair encoding (BPE) tokenizers, used by the vast majority of modern language models. Our key insight is that the ordered vocabulary learned by a BPE tokenizer naturally reveals information about the token frequencies in its training data: the first token is the most common byte pair, the second is the most common pair after merging the first token, and so on. Given a tokenizer's merge list along with data samples for each category of interest (e.g., different natural languages), we formulate a linear program that solves for the relative proportion of each category in the tokenizer's training set. Importantly, to the extent to which tokenizer training data is representative of the pretraining data, we indirectly learn about the pretraining data. In controlled experiments, we show that our attack can recover mixture ratios with high precision for tokenizers trained on known mixtures of natural languages, programming languages, and data sources. We then apply our approach to off-the-shelf tokenizers released alongside recent LMs. We confirm much publicly disclosed information about these models, and also make several new inferences: GPT-4o is much more multilingual than its predecessors, training on 10x more non-English data than GPT-3.5, Claude is trained on predominantly code, and many recent models are trained on 7-16% books. We hope our work sheds light on current design practices for pretraining data, and inspires continued research into data mixture inference for LMs.