Poster
in
Workshop: Data-centric Machine Learning Research (DMLR): Datasets for Foundation Models
Bayesian Data Selection
Julian Rodemann
A wide range of machine learning algorithms iteratively add data to the training sample. Examples include semi-supervised learning, active learning, multi-armed bandits, and Bayesian optimization. We embed this kind of data addition into decision theory by framing data selection as a decision problem. This paves the way for finding Bayes-optimal selections of data. For the illustrative case of self-training in semi-supervised learning, we derive the respective Bayes criterion. We further show that deploying this criterion mitigates the issue of confirmation bias by empirically assessing our method for generalized linear models, semi-parametric generalized additive models, and Bayesian neural networks on simulated and real-world data.