Skip to yearly menu bar Skip to main content


Search All 2023 Events
 

62 Results

<<   <   Page 1 of 6   >   >>
Workshop
Privacy-Preserving Federated Heavy Hitter Analytics for Non-IID Data
Jiaqi Shao · Shanshan Han · Chaoyang He · Bing Luo
Workshop
A Privacy-Friendly Approach to Data Valuation
Jiachen Wang · Yuqing Zhu · Yu-Xiang Wang · Ruoxi Jia · Prateek Mittal
Poster
Wed 17:00 On the Privacy-Robustness-Utility Trilemma in Distributed Learning
Youssef Allouah · Rachid Guerraoui · Nirupam Gupta · Rafael Pinot · John Stephan
Workshop
Privacy Amplification via Compression: Achieving the Optimal Privacy-Accuracy-Communication Trade-off in Distributed Mean Estimation
Wei-Ning Chen · Dan Song · Ayfer Ozgur · Peter Kairouz
Workshop
Exact Optimality in Communication-Privacy-Utility Tradeoffs
Berivan Isik · Wei-Ning Chen · Ayfer Ozgur · Tsachy Weissman · Albert No
Workshop
On the Challenges of Deploying Privacy-Preserving Synthetic Data in the Enterprise
Lauren Arthur · Jason Costello · Jonathan Hardy · Will O’Brien · James Rea · Gareth Rees · Georgi Ganev
Poster
Thu 13:30 Privacy-Aware Compression for Federated Learning Through Numerical Mechanism Design
Chuan Guo · Kamalika Chaudhuri · Pierre Stock · Michael Rabbat
Oral
Wed 19:48 HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption
Seewoo Lee · Garam Lee · Jung Woo Kim · Junbum Shin · Mun-Kyu Lee
Poster
Tue 14:00 FedVS: Straggler-Resilient and Privacy-Preserving Vertical Federated Learning for Split Models
Songze Li · Duanyi YAO · Jin Liu
Poster
Wed 17:00 HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption
Seewoo Lee · Garam Lee · Jung Woo Kim · Junbum Shin · Mun-Kyu Lee
Poster
Tue 17:00 Algorithms for bounding contribution for histogram estimation under user-level privacy
Yuhan Liu · Ananda Suresh · Wennan Zhu · Peter Kairouz · Marco Gruteser
Poster
Tue 17:00 Federated Linear Contextual Bandits with User-level Differential Privacy
Ruiquan Huang · Huanyu Zhang · Luca Melis · Milan Shen · Meisam Hejazinia · Jing Yang