Skip to yearly menu bar Skip to main content


Poster
in
Workshop: 2nd ICML Workshop on New Frontiers in Adversarial Machine Learning

Certifying Ensembles: A General Certification Theory with S-Lipschitzness

Aleksandar Petrov · Francisco Eiras · Amartya Sanyal · Phil Torr · Adel Bibi

Keywords: [ certification ] [ robustness ] [ lipschitz ] [ ensembles ] [ s-lipschitzness ]


Abstract:

Improving and guaranteeing the robustness of deep learning models has been a topic of intense research. Ensembling, which combines several classifiers to provide a better model, has been shown to be beneficial for generalisation, uncertainty estimation, calibration, and mitigating the effects of concept drift. However, the impact of ensembling on certified robustness is less well understood. In this work, we generalise Lipschitz continuity by introducing S-Lipschitz classifiers, which we use to analyse the theoretical robustness of ensembles. Our results are precise conditions when ensembles of robust classifiers are more robust than any constituent classifier, as well as conditions when they are less robust.

Chat is not available.