Fri 6:00 a.m. - 5:00 p.m.
|
Please visit the workshop website for the full program
(
Program
)
>
link
|
🔗
|
Fri 6:00 a.m. - 6:20 a.m.
|
Opening Remarks
(
Presentation
)
>
SlidesLive Video
|
🔗
|
Fri 6:20 a.m. - 7:00 a.m.
|
Differentiable optimization for control and reinforcement learning
(
Invited Talk
)
>
SlidesLive Video
|
Brandon Amos
🔗
|
Fri 7:00 a.m. - 7:30 a.m.
|
Break
|
🔗
|
Fri 7:30 a.m. - 8:10 a.m.
|
Discovering RL Algorithms
(
Invited Talk
)
>
SlidesLive Video
|
Junhyuk Oh
🔗
|
Fri 8:10 a.m. - 9:00 a.m.
|
Discovered Policy Optimisation. Live in the Moment: Learning Dynamics Model Adapted to Evolving Policy. Adaptive Interest for Emphatic Reinforcement Learning
(
Contributed Talks
)
>
|
🔗
|
Fri 9:00 a.m. - 10:40 a.m.
|
Break
|
🔗
|
Fri 10:40 a.m. - 11:20 a.m.
|
The Value Equivalence Principle for Model-Based RL
(
Invited Talk
)
>
SlidesLive Video
|
Christopher Grimm
🔗
|
Fri 11:20 a.m. - 12:00 p.m.
|
A Model-Based Reinforcement Learning Wishlist
(
Invited Talk
)
>
SlidesLive Video
|
Erin Talvitie
🔗
|
Fri 12:00 p.m. - 12:30 p.m.
|
Break
|
🔗
|
Fri 12:30 p.m. - 1:30 p.m.
|
DARL Panel
(
Panel Discussion
)
>
SlidesLive Video
|
🔗
|
Fri 1:30 p.m. - 2:30 p.m.
|
Poster Session
(
In-person only poster presentation
)
>
|
🔗
|
Fri 2:30 p.m. - 3:10 p.m.
|
Policy Gradient: Theory for Making Best Use of It
(
Invited Talk
)
>
SlidesLive Video
|
Mengdi Wang
🔗
|
Fri 3:10 p.m. - 3:50 p.m.
|
General-purpose meta learning
(
Invited Talk
)
>
SlidesLive Video
|
Louis Kirsch
🔗
|
Fri 3:50 p.m. - 5:00 p.m.
|
Closing Remarks & Poster Session
(
Presentation followed by an In-person only poster presentation
)
>
|
🔗
|
-
|
Effective Offline RL Needs Going Beyond Pessimism: Representations and Distributional Shift
(
Poster
)
>
link
|
Xinyang Geng · Kevin Li · Abhishek Gupta · Aviral Kumar · Sergey Levine
🔗
|
-
|
Hyperbolically Discounted Advantage Estimation for Generalization in Reinforcement Learning
(
Poster
)
>
link
SlidesLive Video
|
Nasik Muhammad Nafi · Raja Farrukh Ali · William Hsu
🔗
|
-
|
Deep Policy Generators
(
Poster
)
>
link
|
Francesco Faccio · Vincent Herrmann · Aditya Ramesh · Louis Kirsch · Jürgen Schmidhuber
🔗
|
-
|
CoMBiNED: Multi-Constrained Model Based Planning for Navigation in Dynamic Environments
(
Poster
)
>
link
SlidesLive Video
|
Harit Pandya · Rudra Poudel · Stephan Liwicki
🔗
|
-
|
Exploration Hurts in Bandits with Partially Observed Stochastic Contexts
(
Poster
)
>
link
|
Hongju Park · Mohamad Kazem Shirani Faradonbeh
🔗
|
-
|
Exploration in Reward Machines with Low Regret
(
Poster
)
>
link
SlidesLive Video
|
Hippolyte Bourel · Anders Jonsson · Odalric-Ambrym Maillard · Mohammad Sadegh Talebi
🔗
|
-
|
Exploring Long-Horizon Reasoning with Deep RL in Combinatorially Hard Tasks
(
Poster
)
>
link
|
Andrew C Li · Pashootan Vaezipoor · Rodrigo A Toro Icarte · Sheila McIlraith
🔗
|
-
|
VIPer: Iterative Value-Aware Model Learning on the Value Improvement Path
(
Poster
)
>
link
SlidesLive Video
|
Romina Abachi · Claas Voelcker · Animesh Garg · Amir-massoud Farahmand
🔗
|
-
|
Model-Based Meta Automatic Curriculum Learning
(
Poster
)
>
link
SlidesLive Video
|
Zifan Xu · Yulin Zhang · Shahaf Shperberg · Reuth Mirsky · Yuqian Jiang · Bo Liu · Peter Stone
🔗
|
-
|
Adaptive Interest for Emphatic Reinforcement Learning
(
Spotlight
)
>
link
SlidesLive Video
|
Martin Klissarov · Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Taesup Kim · Alex Smola
🔗
|
-
|
General Policy Evaluation and Improvement by Learning to Identify Few But Crucial States
(
Poster
)
>
link
|
Francesco Faccio · Aditya Ramesh · Vincent Herrmann · Jean Harb · Jürgen Schmidhuber
🔗
|
-
|
An Investigation into the Open World Survival Game Crafter
(
Poster
)
>
link
SlidesLive Video
|
Aleksandar Stanic · Yujin Tang · David Ha · Jürgen Schmidhuber
🔗
|
-
|
Unsupervised Model-based Pre-training for Data-efficient Reinforcement Learning from Pixels
(
Poster
)
>
link
SlidesLive Video
|
Sai Rajeswar · Pietro Mazzaglia · Tim Verbelen · Alex Piche · Bart Dhoedt · Aaron Courville · Alexandre Lacoste
🔗
|
-
|
Model-Based Reinforcement Learning with SINDy
(
Poster
)
>
link
SlidesLive Video
|
Rushiv Arora · Eliot Moss · Bruno da Silva
🔗
|
-
|
Toward Human Cognition-inspired High-Level Decision Making For Hierarchical Reinforcement Learning Agents
(
Poster
)
>
link
SlidesLive Video
|
Rousslan F. J. Dossa · Takashi Matsubara
🔗
|
-
|
MoCoDA: Model-based Counterfactual Data Augmentation
(
Poster
)
>
link
SlidesLive Video
|
Silviu Pitis · Elliot Creager · Ajay Mandlekar · Animesh Garg
🔗
|
-
|
An Adaptive Entropy-Regularization Framework for Multi-Agent Reinforcement Learning
(
Poster
)
>
link
SlidesLive Video
|
WOOJUN KIM · Youngchul Sung
🔗
|
-
|
Leader-based Decision Learning for Cooperative Multi-Agent Reinforcement Learning
(
Poster
)
>
link
|
Wenqi Chen · Xin Zeng · Amber Li
🔗
|
-
|
Recursive History Representations for Unsupervised Reinforcement Learning in Multiple-Environments
(
Poster
)
>
link
|
Mirco Mutti · Pietro Maldini · Riccardo De Santi · Marcello Restelli
🔗
|
-
|
Building a Subspace of Policies for Scalable Continual Learning
(
Poster
)
>
link
SlidesLive Video
|
Jean-Baptiste Gaya · Thang Doan · Lucas Caccia · Laure Soulier · Ludovic Denoyer · Roberta Raileanu
🔗
|
-
|
DASCO: Dual-Generator Adversarial Support Constrained Offline Reinforcement Learning
(
Poster
)
>
link
SlidesLive Video
|
Quan Vuong · Aviral Kumar · Sergey Levine · Yevgen Chebotar
🔗
|
-
|
Representation Gap in Deep Reinforcement Learning
(
Poster
)
>
link
SlidesLive Video
|
Qiang He · Huangyuan Su · Jieyu Zhang · Xinwen Hou
🔗
|
-
|
Challenges and Opportunities in Offline Reinforcement Learning from Visual Observations
(
Poster
)
>
link
SlidesLive Video
|
Cong Lu · Philip Ball · Tim G. J Rudner · Jack Parker-Holder · Michael A Osborne · Yee-Whye Teh
🔗
|
-
|
Giving Feedback on Interactive Student Programs with Meta-Exploration
(
Poster
)
>
link
SlidesLive Video
|
Evan Liu · Moritz Stephan · Allen Nie · Chris Piech · Emma Brunskill · Chelsea Finn
🔗
|
-
|
When to Ask for Help: Proactive Interventions in Autonomous Reinforcement Learning
(
Poster
)
>
link
|
Annie Xie · Fahim Tajwar · Archit Sharma · Chelsea Finn
🔗
|
-
|
Beyond the Return: Off-policy Function Estimation under User-specified Error-measuring Distributions
(
Poster
)
>
link
SlidesLive Video
|
Audrey Huang · Nan Jiang
🔗
|
-
|
Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time Guarantees
(
Poster
)
>
link
SlidesLive Video
|
Siliang Zeng · Chenliang Li · Alfredo Garcia · Mingyi Hong
🔗
|
-
|
You Can’t Count on Luck: Why Decision Transformers Fail in Stochastic Environments
(
Poster
)
>
link
SlidesLive Video
|
Keiran Paster · Sheila McIlraith · Jimmy Ba
🔗
|
-
|
Convergence and Price of Anarchy Guarantees of the Softmax Policy Gradient in Markov Potential Games
(
Poster
)
>
link
SlidesLive Video
|
Dingyang Chen · Qi Zhang · Thinh Doan
🔗
|
-
|
Fast Convergence for Unstable Reinforcement Learning Problems by Logarithmic Mapping
(
Poster
)
>
link
SlidesLive Video
|
Wang Zhang · Lam Nguyen · Subhro Das · Alexandre Megretsky · Luca Daniel · Tsui-Wei Weng
🔗
|
-
|
Self-Referential Meta Learning
(
Poster
)
>
link
SlidesLive Video
|
Louis Kirsch · Jürgen Schmidhuber
🔗
|
-
|
Distributionally Adaptive Meta Reinforcement Learning
(
Poster
)
>
link
SlidesLive Video
|
Anurag Ajay · Dibya Ghosh · Sergey Levine · Pulkit Agrawal · Abhishek Gupta
🔗
|
-
|
You Only Live Once: Single-Life Reinforcement Learning via Learned Reward Shaping
(
Poster
)
>
link
|
Annie Chen · Archit Sharma · Sergey Levine · Chelsea Finn
🔗
|
-
|
Discovered Policy Optimisation
(
Spotlight
)
>
link
SlidesLive Video
|
Christopher Lu · Jakub Grudzien Kuba · Alistair Letcher · Luke Metz · Christian Schroeder · Jakob Foerster
🔗
|
-
|
Directed Exploration via Uncertainty-Aware Critics
(
Poster
)
>
link
|
Amarildo Likmeta · Matteo Sacco · Alberto Maria Metelli · Marcello Restelli
🔗
|
-
|
Adversarial Cheap Talk
(
Poster
)
>
link
|
Christopher Lu · Timon Willi · Alistair Letcher · Jakob Foerster
🔗
|
-
|
Adaptive Intrinsic Motivation with Decision Awareness
(
Poster
)
>
link
SlidesLive Video
|
Suyoung Lee · Sae-Young Chung
🔗
|
-
|
Leveraging Factored Action Spaces for Efficient Offline Reinforcement Learning in Healthcare
(
Poster
)
>
link
SlidesLive Video
|
Shengpu Tang · Maggie Makar · Michael Sjoding · Finale Doshi-Velez · Jenna Wiens
🔗
|
-
|
Dynamic Update-to-Data Ratio: Minimizing World Model Overfitting
(
Poster
)
>
link
|
Nicolai Dorka · Tim Welschehold · Wolfram Burgard
🔗
|
-
|
Task Factorization in Curriculum Learning
(
Poster
)
>
link
SlidesLive Video
|
Reuth Mirsky · Shahaf Shperberg · Yulin Zhang · Zifan Xu · Yuqian Jiang · Jiaxun Cui · Peter Stone
🔗
|
-
|
SAFER: Data-Efficient and Safe Reinforcement Learning via Skill Acquisition
(
Poster
)
>
link
SlidesLive Video
|
Dylan Slack · Yinlam Chow · Bo Dai · Nevan Wichers
🔗
|
-
|
Guided Exploration in Reinforcement Learning via Monte Carlo Critic Optimization
(
Poster
)
>
link
SlidesLive Video
|
Igor Kuznetsov
🔗
|
-
|
Live in the Moment: Learning Dynamics Model Adapted to Evolving Policy
(
Spotlight
)
>
link
SlidesLive Video
|
xiyao wang · Wichayaporn Wongkamjan · Furong Huang
🔗
|
-
|
Deciding What to Model: Value-Equivalent Sampling for Reinforcement Learning
(
Poster
)
>
link
|
Dilip Arumugam · Benjamin Van Roy
🔗
|
-
|
Generalization of Reinforcement Learning with Policy-Aware Adversarial Data Augmentation
(
Poster
)
>
link
SlidesLive Video
|
Hanping Zhang · Yuhong Guo
🔗
|
-
|
MEPG: A Minimalist Ensemble Policy Gradient Framework for Deep Reinforcement Learning
(
Poster
)
>
link
SlidesLive Video
|
Qiang He · Huangyuan Su · Chen GONG · Xinwen Hou
🔗
|