Skip to yearly menu bar Skip to main content


Spotlight

FedNL: Making Newton-Type Methods Applicable to Federated Learning

Mher Safaryan · Rustem Islamov · Xun Qian · Peter Richtarik

Room 318 - 320
[ ] [ Livestream: Visit Optimization ]

Abstract: Inspired by recent work of Islamov et al (2021), we propose a family of Federated Newton Learn (\algname{FedNL}) methods, which we believe is a marked step in the direction of making second-order methods applicable to FL. In contrast to the aforementioned work, \algname{FedNL} employs a different Hessian learning technique which i) enhances privacy as it does not rely on the training data to be revealed to the coordinating server, ii) makes it applicable beyond generalized linear models, and iii) provably works with general contractive compression operators for compressing the local Hessians, such as Top-$K$ or Rank-$R$, which are vastly superior in practice. Notably, we do not need to rely on error feedback for our methods to work with contractive compressors. Moreover, we develop \algname{FedNL-PP}, \algname{FedNL-CR} and \algname{FedNL-LS}, which are variants of \algname{FedNL} that support partial participation, and globalization via cubic regularization and line search, respectively, and \algname{FedNL-BC}, which is a variant that can further benefit from bidirectional compression of gradients and models, i.e., smart uplink gradient and smart downlink model compression. We prove local convergence rates that are independent of the condition number, the number of training data points, and compression variance. Our communication efficient Hessian learning technique provably learns the Hessian at the optimum. Finally, we perform a variety of numerical experiments that show that our \algname{FedNL} methods have state-of-the-art communication complexity when compared to key baselines.

Chat is not available.