FedNL: Making Newton-Type Methods Applicable to Federated Learning

Mher Safaryan Postdoctoral Research Fellow

Rustem Islamov

Master's student

Xun Qian

Research Scientist

Peter Richtárik

Professor of Computer Science

The Problem

The Problem

Hessians are Lipschitz continuous

$$\|\nabla^2 f_i(x) - \nabla^2 f_i(y)\| \le L\|x - y\|$$

2nd order smooth non-convex

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) \stackrel{\text{def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}$$

Strongly convex

for some $\mu > 0$ and for any $x, y \in \mathbb{R}^d$ $f(x) \ge f(y) + \langle \nabla f(x), x - y \rangle + \frac{\mu}{2} ||x - y||^2$

Distributed Implementation of Newton's method

Distributed Implementation of Newton's method

Newton's Method

$$x^{k+1} = x^k - \left(\frac{1}{n}\sum_{i=1}^n \nabla^2 f_i(x^k)\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^n \nabla f_i(x^k)\right)^{-1}$$

Newton's Method

$$x^{k+1} = x^k - \left(\frac{1}{n} \sum_{i=1}^n \nabla^2 f_i(x^k)\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^n \nabla f_i(x^k)\right)$$
Can be computed locally

Expensive to communicate: $\mathcal{O}(d^2)$

Easy to communicate: $\mathcal{O}(d)$

- $\mathcal{O}(d)$ communication cost per round
- Implementability in practice
- Local quadratic convergence rate independent of the condition number

The unique minimizer of f(x)

$$x^{k+1} = x^k - \left(\frac{1}{n} \sum_{i=1}^n \nabla^2 f_i(x^*)\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^n \nabla f_i(x^k)\right)$$

Rustem Islamov, Xun Qian and Peter Richtárik Distributed second order methods with fast rates and compressed communication, *ICML 2021*.

The unique minimizer of
$$f(\boldsymbol{x})$$

$$x^{k+1} = x^k - \left(\frac{1}{r}\right)^{k}$$

 $\sum_{i=1}^{n} \nabla^2 f_i(x^*)$

 $\left(\frac{1}{n}\sum_{i=1}^{n}\nabla f_{i}(x^{k})\right)$

Rustem Islamov, Xun Qian and Peter Richtárik Distributed second order methods with fast rates and compressed communication, *ICML 2021*.

Can NOT be computed locally

Single communication of $\mathcal{O}(d^2)$

Can be computed locally

Easy to communicate: $\mathcal{O}(d)$

- $\mathcal{O}(d)$ communication cost per round
- Implementability in practice
- Local quadratic convergence rate independent of the condition number

Local quadratic rate

Learning the Optimal Hessian Matrices

Newton Star

$$x^{k+1} = x^k - \left(\frac{1}{n} \sum_{i=1}^n \nabla^2 f_i(x^*)\right)^{-1} \nabla f(x^k)$$

Learning the Optimal Hessian Matrices

Newton Star

$$x^{k+1} = x^k - \left(\frac{1}{n} \sum_{i=1}^n \nabla^2 f_i(x^*)\right)^{-1} \nabla f(x^k)$$

Idea! Learn the optimal Hessians $\nabla^2 f_i(x^*)$ in communication efficient manner:

$$(i)$$
 $\mathbf{H}_{i}^{k} \to \nabla^{2} f_{i}(x^{*})$ as $k \to \infty$ (ii) $\mathbf{H}_{i}^{k+1} - \mathbf{H}_{i}^{k}$ is compressed

$$x^{k+1} = x^k - \left(\frac{1}{n} \sum_{i=1}^n \mathbb{H}_i^k\right)^{-1} \nabla f(x^k)$$
$$= x^k - \left(\mathbb{H}^k\right)^{-1} \nabla f(x^k)$$

FedNL: Two Options for Updating the Global Model

Option 1

$$x^{k+1} = x^k - \left(\left[\mathbf{H}^k \right]_{\mu} \right)^{-1} \nabla f(x^k)$$
 Projection onto the cone of positive definite matrices

Option 2

$$x^{k+1} = x^k - \left(\mathbf{H}^k + \mathbf{l}^k \mathbf{I}\right)^{-1} \nabla f(x^k)$$

$$l^k = \frac{1}{n} \sum_{i=1}^n ||\mathbf{H}_i^k - \nabla^2 f_i(x^k)||_{\mathrm{F}}$$

FedNL: Hessian Learning Rate Options

$$\mathbf{H}_{i}^{k+1} = \mathbf{H}_{i}^{k} + \alpha \mathcal{C}_{i}^{k} (\nabla^{2} f_{i}(x^{k}) - \mathbf{H}_{i}^{k})$$
Stepsize depends only on the compression, e.g.,
$$\alpha = 1$$

$$\alpha = 1 - \sqrt{1 - \delta}$$

$$\alpha = \frac{1}{\omega + 1}$$

FedNL: New Hessian Learning Technique

$$\mathbf{H}_i^{k+1} = \mathbf{H}_i^k + \alpha \mathbf{C}_i^k (\nabla^2 f_i(x^k) - \mathbf{H}_i^k)$$
Compression operator

Contractive compressor $\mathbb{C}(\delta), \ \delta \in [0,1)$

$$\|\mathcal{C}(\mathbf{M})\|_{F} \leq \|\mathbf{M}\|_{F}$$

$$\|\mathcal{C}(\mathbf{M}) - \mathbf{M}\|_{F}^{2} \leq (1 - \delta)\|\mathbf{M}\|_{F}^{2} \quad \forall \ \mathbf{M} \in \mathbb{R}^{d \times d}$$

Greedy sparsification (Top-K)

$$\begin{bmatrix} -0.4 & 12.1 & 0.76 \\ 2.8 & -9.7 & -1.1 \\ 0.24 & 4.5 & 0.9 \end{bmatrix} \xrightarrow{K=2} \begin{bmatrix} 0 & 12.1 & 0 \\ 0 & -9.7 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Unbiased compressor $\mathbb{B}(\omega), \ \omega \geq 0$

$$\mathbb{E}[\mathcal{C}(\mathbf{M})] = \mathbf{M}$$

$$\mathbb{E}\left[\|\mathcal{C}(\mathbf{M}) - \mathbf{M}\|_{\mathrm{F}}^{2}\right] \leq \omega \|\mathbf{M}\|_{\mathrm{F}}^{2} \quad \forall \ \mathbf{M} \in \mathbb{R}^{d \times d}$$

Random sparsification (Rand-K)

$$\begin{bmatrix} -0.4 & 12.1 & 0.76 \\ 2.8 & -9.7 & -1.1 \\ 0.24 & 4.5 & 0.9 \end{bmatrix} \xrightarrow{K = 2} \underbrace{\frac{9}{2}} \begin{bmatrix} -0.4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 4.5 & 0 \end{bmatrix}$$
 factor preserving unbiasedness

FedNL: Local Convergence Theory

$$\|x^k - x^*\|^2 \leq \frac{1}{2^k} \|x^0 - x^*\|^2$$

$$\text{Local (fixed) linear rate}$$

FedNL: Local Convergence Theory

FedNL: Local Convergence Theory

Experiments: Regularized Logistic Regression

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) + \frac{\lambda}{2} \|x\|^2 \right\}, \qquad f_i(x) = \frac{1}{m} \sum_{j=1}^m \log \left(1 + \exp(-b_{ij} a_{ij}^\top x) \right),$$

where $\{a_{ij}, b_{ij}\}_{j \in [m]}$ are data points at the *i*-th device. The datasets were taken from LibSVM library [Chang and Lin, [2011]: a1a, a9a, w7a, w8a, and phishing.

Experiments: FedNL vs Gradient-Type Methods

(a) **a1a**,
$$\lambda = 10^{-3}$$

(b) a9a,
$$\lambda = 10^{-4}$$

Experiments: FedNL vs DINGO

(c) w8a,
$$\lambda = 10^{-3}$$

(d) phishing,
$$\lambda = 10^{-4}$$

Experiments: FedNL vs NEWTON-LEARN (NL)

(a) w8a,
$$\lambda = 10^{-3}$$

(b) phishing,
$$\lambda = 10^{-3}$$

