Moderator : Tianbao Yang

Tue 19 Jul 10:30 a.m. PDT
— noon PDT

Abstract:

Chat is not available.

Tue 19 July 10:30 - 10:50 PDT

(Oral)

Sixing Yu · Arya Mazaheri · Ali Jannesari

Model compression is an essential technique for deploying deep neural networks (DNNs) on power and memory-constrained resources. However, existing model-compression methods often rely on human expertise and focus on parameters' local importance, ignoring the rich topology information within DNNs. In this paper, we propose a novel multi-stage graph embedding technique based on graph neural networks (GNNs) to identify DNN topologies and use reinforcement learning (RL) to find a suitable compression policy. We performed resource-constrained (i.e., FLOPs) channel pruning and compared our approach with state-of-the-art model compression methods.We evaluated our method on various models from typical to mobile-friendly networks, such as ResNet family, VGG-16, MobileNet-v1/v2, and ShuffleNet. Results show that our method can achieve higher compression ratios with a minimal fine-tuning cost yet yields outstanding and competitive performance.

Tue 19 July 10:50 - 10:55 PDT

(Spotlight)

Ayoub El Hanchi · David Stephens · Chris Maddison

Importance sampling is a promising strategy for improving the convergence rate of stochastic gradient methods. It is typically used to precondition the optimization problem, but it can also be used to reduce the variance of the gradient estimator. Unfortunately, this latter point of view has yet to lead to practical methods that provably improve the asymptotic error of stochastic gradient methods. In this work, we propose stochastic reweighted gradient descent (SRG), a stochastic gradient method based solely on importance sampling that can reduce the variance of the gradient estimator and improve on the asymptotic error of stochastic gradient descent (SGD) in the strongly convex and smooth case. We show that SRG can be extended to combine the benefits of both importance-sampling-based preconditioning and variance reduction. When compared to SGD, the resulting algorithm can simultaneously reduce the condition number and the asymptotic error, both by up to a factor equal to the number of component functions. We demonstrate improved convergence in practice on regularized logistic regression problems.

Tue 19 July 10:55 - 11:00 PDT

(Spotlight)

Qiujiang Jin · Alec Koppel · Ketan Rajawat · Aryan Mokhtari

Non-asymptotic analysis of quasi-Newton methods have received a lot of attention recently. In particular, several works have established a non-asymptotic superlinear rate of $$\mathcal{O}((1/\sqrt{t})^t)$$ for the (classic) BFGS method by exploiting the fact that its error of Newton direction approximation approaches zero. Moreover, a greedy variant of the BFGS method was recently proposed which accelerates the convergence of BFGS by directly approximating the Hessian matrix, instead of Newton direction, and achieves a fast local quadratic convergence rate. Alas, the local quadratic convergence of Greedy-BFGS requires way more updates compared to the number of iterations that BFGS requires for a local superlinear rate. This is due to the fact that in Greedy-BFGS the Hessian is directly approximated and the Newton direction approximation may not be as accurate as the one for BFGS. In this paper, we close this gap and present a novel BFGS method that has the best of two worlds. More precisely, it leverages the approximation ideas of both BFGS and Greedy-BFGS to properly approximate both the Newton direction and the Hessian matrix. Our theoretical results show that our method out-performs both BFGS and Greedy-BFGS in terms of convergence rate, while it reaches its quadratic convergence rate with fewer steps compared to Greedy-BFGS. Numerical experiments on various datasets also confirm our theoretical findings.

Tue 19 July 11:00 - 11:05 PDT

(Spotlight)

Anastasios Angelopoulos · Amit Pal Kohli · Stephen Bates · Michael Jordan · Jitendra Malik · Thayer Alshaabi · Srigokul Upadhyayula · Yaniv Romano

Image-to-image regression is an important learning task, used frequently in biological imaging. Current algorithms, however, do not generally offer statistical guarantees that protect against a model's mistakes and hallucinations. To address this, we develop uncertainty quantification techniques with rigorous statistical guarantees for image-to-image regression problems. In particular, we show how to derive uncertainty intervals around each pixel that are guaranteed to contain the true value with a user-specified confidence probability. Our methods work in conjunction with any base machine learning model, such as a neural network, and endow it with formal mathematical guaranteesâ€”regardless of the true unknown data distribution or choice of model. Furthermore, they are simple to implement and computationally inexpensive. We evaluate our procedure on three image-to-image regression tasks: quantitative phase microscopy, accelerated magnetic resonance imaging, and super-resolution transmission electron microscopy of a Drosophila melanogaster brain.

Tue 19 July 11:05 - 11:10 PDT

(Spotlight)

Mher Safaryan · Rustem Islamov · Xun Qian · Peter Richtarik

Inspired by recent work of Islamov et al (2021), we propose a family of Federated Newton Learn (\algname{FedNL}) methods, which we believe is a marked step in the direction of making second-order methods applicable to FL. In contrast to the aforementioned work, \algname{FedNL} employs a different Hessian learning technique which i) enhances privacy as it does not rely on the training data to be revealed to the coordinating server, ii) makes it applicable beyond generalized linear models, and iii) provably works with general contractive compression operators for compressing the local Hessians, such as Top-$K$ or Rank-$R$, which are vastly superior in practice. Notably, we do not need to rely on error feedback for our methods to work with contractive compressors. Moreover, we develop \algname{FedNL-PP}, \algname{FedNL-CR} and \algname{FedNL-LS}, which are variants of \algname{FedNL} that support partial participation, and globalization via cubic regularization and line search, respectively, and \algname{FedNL-BC}, which is a variant that can further benefit from bidirectional compression of gradients and models, i.e., smart uplink gradient and smart downlink model compression. We prove local convergence rates that are independent of the condition number, the number of training data points, and compression variance. Our communication efficient Hessian learning technique provably learns the Hessian at the optimum. Finally, we perform a variety of numerical experiments that show that our \algname{FedNL} methods have state-of-the-art communication complexity when compared to key baselines.

Tue 19 July 11:10 - 11:30 PDT

(Oral)

Jiali Wang · Wen Huang · Rujun Jiang · Xudong Li · Alex Wang

The Stackelberg prediction game (SPG) is popular in characterizing strategic interactions between a learner and an attacker. As an important special case, the SPG with least squares loss (SPG-LS) has recently received much research attention. Although initially formulated as a difficult bi-level optimization problem, SPG-LS admits tractable reformulations which can be polynomially globally solved by semidefinite programming or second order cone programming. However, all the available approaches are not well-suited for handling large-scale datasets, especially those with huge numbers of features. In this paper, we explore an alternative reformulation of the SPG-LS. By a novel nonlinear change of variables, we rewrite the SPG-LS as a spherically constrained least squares (SCLS) problem. Theoretically, we show that an $\epsilon$ optimal solutions to the SCLS (and the SPG-LS) can be achieved in $\tilde O(N/\sqrt{\epsilon})$ floating-point operations, where $N$ is the number of nonzero entries in the data matrix. Practically, we apply two well-known methods for solving this new reformulation, i.e., the Krylov subspace method and the Riemannian trust region method. Both algorithms are factorization free so that they are suitable for solving large scale problems. Numerical results on both synthetic and real-world datasets indicate that the SPG-LS, equipped with the SCLS reformulation, can be solved orders of magnitude faster than the state of the art.

Tue 19 July 11:30 - 11:35 PDT

(Spotlight)

Dongruo Zhou · Quanquan Gu

Stochastic high-order methods for finding first-order stationary points in nonconvex finite-sum optimization have witnessed increasing interest in recent years, and various upper and lower bounds of the oracle complexity have been proved. However, under standard regularity assumptions, existing complexity bounds are all dimension-dependent (e.g., polylogarithmic dependence), which contrasts with the dimension-free complexity bounds for stochastic first-order methods and deterministic high-order methods. In this paper, we show that the polylogarithmic dimension dependence gap is not essential and can be closed. More specifically, we propose stochastic high-order algorithms with novel first-order and high-order derivative estimators, which can achieve dimension-free complexity bounds. With the access to $p$-th order derivatives of the objective function, we prove that our algorithm finds $\epsilon$-stationary points with $O(n^{(2p-1)/(2p)}/\epsilon^{(p+1)/p})$ high-order oracle complexities, where $n$ is the number of individual functions. Our result strictly improves the complexity bounds of existing high-order deterministic methods with respect to the dependence on $n$, and it is dimension-free compared with existing stochastic high-order methods.

Tue 19 July 11:35 - 11:40 PDT

(Spotlight)

Lucy Gao · Jane J. Ye · Haian Yin · Shangzhi Zeng · Jin Zhang

Existing gradient-based optimization methods for hyperparameter tuning can only guarantee theoretical convergence to stationary solutions when the bilevel program satisfies the condition that for fixed upper-level variables, the lower-level is strongly convex (LLSC) and smooth (LLS). This condition is not satisfied for bilevel programs arising from tuning hyperparameters in many machine learning algorithms. In this work, we develop a sequentially convergent Value Function based Difference-of-Convex Algorithm with inexactness (VF-iDCA). We then ask: can this algorithm achieve stationary solutions without LLSC and LLS assumptions? We provide a positive answer to this question for bilevel programs from a broad class of hyperparameter tuning applications. Extensive experiments justify our theoretical results and demonstrate the superiority of the proposed VF-iDCA when applied to tune hyperparameters.

Tue 19 July 11:40 - 11:45 PDT

(Spotlight)

Xiao Zhou · Renjie Pi · Weizhong Zhang · Yong LIN · Zonghao Chen · Tong Zhang

The goal of coreset selection in supervised learning is to produce a weighted subset of data, so that training only on the subset achieves similar performance as training on the entire dataset. Existing methods achieved promising results in resource-constrained scenarios such as continual learning and streaming. However, most of the existing algorithms are limited to traditional machine learning models. A few algorithms that can handle large models adopt greedy search approaches due to the difficulty in solving the discrete subset selection problem, which is computationally costly when coreset becomes larger and often produces suboptimal results. In this work, for the first time we propose a continuous probabilistic bilevel formulation of coreset selection by learning a probablistic weight for each training sample. The overall objective is posed as a bilevel optimization problem, where 1) the inner loop samples coresets and train the model to convergence and 2) the outer loop updates the sample probability progressively according to the model's performance. Importantly, we develop an efficient solver to the bilevel optimization problem via unbiased policy gradient without trouble of implicit differentiation. We theoretically prove the convergence of this training procedure and demonstrate the superiority of our algorithm against various coreset selection methods in various tasks, especially in more challenging label-noise and class-imbalance scenarios.

Tue 19 July 11:45 - 11:50 PDT

(Spotlight)

Meyer Scetbon · Gabriel PeyrĂ© · Marco Cuturi

The ability to align points across two related yet incomparable point clouds (e.g. living in different spaces) plays an important role in machine learning. The Gromov-Wasserstein (GW) framework provides an increasingly popular answer to such problems, by seeking a low-distortion, geometry-preserving assignment between these points.As a non-convex, quadratic generalization of optimal transport (OT), GW is NP-hard. While practitioners often resort to solving GW approximately as a nested sequence of entropy-regularized OT problems, the cubic complexity (in the number $n$ of samples) of that approach is a roadblock.We show in this work how a recent variant of the OT problem that restricts the set of admissible couplings to those having a low-rank factorization is remarkably well suited to the resolution of GW:when applied to GW, we show that this approach is not only able to compute a stationary point of the GW problem in time $O(n^2)$, but also uniquely positioned to benefit from the knowledge that the initial cost matrices are low-rank, to yield a linear time $O(n)$ GW approximation. Our approach yields similar results, yet orders of magnitude faster computation than the SoTA entropic GW approaches, on both simulated and real data.

Tue 19 July 11:50 - 11:55 PDT

(Spotlight)

Paul Vicol · Jonathan Lorraine · Fabian Pedregosa · David Duvenaud · Roger Grosse

Many problems in machine learning involve bilevel optimization (BLO), including hyperparameter optimization, meta-learning, and dataset distillation. Bilevel problems involve inner and outer parameters, each optimized for its own objective. Often, at least one of the two levels is underspecified and there are multiple ways to choose among equivalent optima. Inspired by recent studies of the implicit bias induced by optimization algorithms in single-level optimization, we investigate the implicit bias of different gradient-based algorithms for jointly optimizing the inner and outer parameters. We delineate two standard BLO methods---cold-start and warm-start BLO---and show that the converged solution or long-run behavior depends to a large degree on these and other algorithmic choices, such as the hypergradient approximation. We also show that the solutions from warm-start BLO can encode a surprising amount of information about the outer objective, even when the outer optimization variables are low-dimensional. We believe that implicit bias deserves as central a role in the study of bilevel optimization as it has attained in the study of single-level neural net optimization.