Skip to yearly menu bar Skip to main content


Spotlight

Task-aware Privacy Preservation for Multi-dimensional Data

Jiangnan Cheng · Ao Tang · Sandeep Chinchali

Room 307
[ ] [ Livestream: Visit Theory/Social Aspects ]

Abstract:

Local differential privacy (LDP) can be adopted to anonymize richer user data attributes that will be input to sophisticated machine learning (ML) tasks. However, today's LDP approaches are largely task-agnostic and often lead to severe performance loss -- they simply inject noise to all data attributes according to a given privacy budget, regardless of what features are most relevant for the ultimate task. In this paper, we address how to significantly improve the ultimate task performance with multi-dimensional user data by considering a task-aware privacy preservation problem. The key idea is to use an encoder-decoder framework to learn (and anonymize) a task-relevant latent representation of user data. We obtain an analytical near-optimal solution for the linear setting with mean-squared error (MSE) task loss. We also provide an approximate solution through a gradient-based learning algorithm for general nonlinear cases. Extensive experiments demonstrate that our task-aware approach significantly improves ultimate task accuracy compared to standard benchmark LDP approaches with the same level of privacy guarantee.

Chat is not available.