Sat 9:00 a.m. - 9:25 a.m.
|
Invited Speaker: Emilie Kaufmann: On pure-exploration in Markov Decision Processes
(
Presentation
)
>
SlidesLive Video
|
Emilie Kaufmann
🔗
|
Sat 9:30 a.m. - 9:55 a.m.
|
Invited Speaker: Christian Kroer: Recent Advances in Iterative Methods for Large-Scale Game Solving
(
Presentation
)
>
link
SlidesLive Video
|
Christian Kroer
🔗
|
Sat 10:00 a.m. - 10:12 a.m.
|
Sparsity in the Partially Controllable LQR
(
Poster & Spotlight Talk
)
>
SlidesLive Video
|
Yonathan Efroni · Sham Kakade · Akshay Krishnamurthy · Cyril Zhang
🔗
|
Sat 10:15 a.m. - 10:27 a.m.
|
On the Theory of Reinforcement Learning with Once-per-Episode Feedback
(
Poster & Spotlight Talk
)
>
SlidesLive Video
|
Niladri Chatterji · Aldo Pacchiano · Peter Bartlett · Michael Jordan
🔗
|
Sat 10:30 a.m. - 10:42 a.m.
|
Implicit Finite-Horizon Approximation for Stochastic Shortest Path
(
Poster & Spotlight Talk
)
>
SlidesLive Video
|
Liyu Chen · Mehdi Jafarnia · Rahul Jain · Haipeng Luo
🔗
|
Sat 10:45 a.m. - 10:57 a.m.
|
Provable Benefits of Actor-Critic Methods for Offline Reinforcement Learning
(
Poster & Spotlight Talk
)
>
SlidesLive Video
|
Andrea Zanette · Martin Wainwright · Emma Brunskill
🔗
|
Sat 11:00 a.m. - 11:25 a.m.
|
Invited Speaker: Animashree Anandkumar: Stability-aware reinforcement learning in dynamical systems
(
Presentation
)
>
SlidesLive Video
|
Animashree Anandkumar
🔗
|
Sat 11:30 a.m. - 11:55 a.m.
|
Invited Speaker: Shie Mannor: Lenient Regret
(
Presentation
)
>
SlidesLive Video
|
Shie Mannor
🔗
|
Sat 12:00 p.m. - 12:30 p.m.
|
Social Session
(
Discussion & Chat
)
>
|
🔗
|
Sat 12:30 p.m. - 2:00 p.m.
|
Poster Session - I
(
Poster Session
)
>
|
🔗
|
Sat 2:00 p.m. - 2:25 p.m.
|
Invited Speaker: Bo Dai: Leveraging Non-uniformity in Policy Gradient
(
Presentation
)
>
SlidesLive Video
|
Bo Dai
🔗
|
Sat 2:30 p.m. - 2:55 p.m.
|
Invited Speaker: Qiaomin Xie: Reinforcement Learning for Zero-Sum Markov Games Using Function Approximation and Correlated Equilibrium
(
Presentation
)
>
SlidesLive Video
|
Qiaomin Xie
🔗
|
Sat 3:00 p.m. - 3:12 p.m.
|
Bad-Policy Density: A Measure of Reinforcement-Learning Hardness
(
Poster & Spotlight Talk
)
>
SlidesLive Video
|
David Abel · Cameron Allen · Dilip Arumugam · D Ellis Hershkowitz · Michael L. Littman · Lawson Wong
🔗
|
Sat 3:15 p.m. - 3:27 p.m.
|
Sample-Efficient Learning of Stackelberg Equilibria in General-Sum Games
(
Poster & Spotlight Talk
)
>
SlidesLive Video
|
Yu Bai · Chi Jin · Huan Wang · Caiming Xiong
🔗
|
Sat 3:30 p.m. - 3:42 p.m.
|
Solving Multi-Arm Bandit Using a Few Bits of Communication
(
Poster & Spotlight Talk
)
>
SlidesLive Video
|
Osama Hanna · Lin Yang · Christina Fragouli
🔗
|
Sat 3:45 p.m. - 3:57 p.m.
|
CRPO: A New Approach for Safe Reinforcement Learning with Convergence Guarantee
(
Poster & Spotlight Talk
)
>
SlidesLive Video
|
Tengyu Xu · Yingbin LIANG · Guanghui Lan
🔗
|
Sat 4:00 p.m. - 4:25 p.m.
|
Invited Speaker: Art Owen: Empirical likelihood for reinforcement learning
(
Presentation
)
>
link
SlidesLive Video
|
🔗
|
Sat 4:30 p.m. - 5:00 p.m.
|
Panel Session: Animashree Anandkumar, Christian Kroer, Art Owen, Qiaomin Xie
(
Discussion Panel
)
>
SlidesLive Video
|
🔗
|
Sat 5:00 p.m. - 5:30 p.m.
|
Social Session
(
Discussion & Chat
)
>
|
🔗
|
Sat 5:30 p.m. - 9:00 p.m.
|
Poster Session - II
(
Poster Session
)
>
|
🔗
|
-
|
Finding the Near Optimal Policy via Reductive Regularization in MDPs
(
Poster
)
>
|
Wenhao Yang · Xiang Li · Guangzeng Xie · Zhihua Zhang
🔗
|
-
|
Finite Sample Analysis of Average-Reward TD Learning and $Q$-Learning
(
Poster
)
>
|
Sheng Zhang · Zhe Zhang · Siva Maguluri
🔗
|
-
|
Sample Complexity of Offline Reinforcement Learning with Deep ReLU Networks
(
Poster
)
>
|
Tang Thanh Nguyen · Sunil Gupta · Hung Tran-The · Svetha Venkatesh
🔗
|
-
|
Triple-Q: A Model-Free Algorithm for Constrained Reinforcement Learning with Sublinear Regret and Zero Constraint Violation
(
Poster
)
>
|
Honghao Wei · Xin Liu · Lei Ying
🔗
|
-
|
Subgaussian Importance Sampling for Off-Policy Evaluation and Learning
(
Poster
)
>
|
Alberto Maria Metelli · Alessio Russo · Marcello Restelli
🔗
|
-
|
Minimax Regret for Stochastic Shortest Path
(
Poster
)
>
|
Alon Cohen · Yonathan Efroni · Yishay Mansour · Aviv Rosenberg
🔗
|
-
|
Collision Resolution in Multi-player Bandits Without Observing Collision Information
(
Poster
)
>
|
Eleni Nisioti · Nikolaos Thomos · Boris Bellalta · Anders Jonsson
🔗
|
-
|
Marginalized Operators for Off-Policy Reinforcement Learning
(
Poster
)
>
|
Yunhao Tang · Mark Rowland · Remi Munos · Michal Valko
🔗
|
-
|
On Overconservatism in Offline Reinforcement Learning
(
Poster
)
>
|
Karush Suri · Florian Shkurti
🔗
|
-
|
Nonstationary Reinforcement Learning with Linear Function Approximation
(
Poster
)
>
|
Huozhi Zhou · Jinglin Chen · Lav Varshney · Ashish Jagmohan
🔗
|
-
|
Finite-Sample Analysis of Off-Policy TD-Learning via Generalized Bellman Operators
(
Poster
)
>
|
Zaiwei Chen · Siva Maguluri · Sanjay Shakkottai · Karthikeyan Shanmugam
🔗
|
-
|
Derivative-Free Policy Optimization for Linear Risk-Sensitive and Robust Control Design: Implicit Regularization and Sample Complexity
(
Poster
)
>
|
Kaiqing Zhang · Xiangyuan Zhang · Bin Hu · Tamer Basar
🔗
|
-
|
When Is Generalizable Reinforcement Learning Tractable?
(
Poster
)
>
|
Dhruv Malik · Yuanzhi Li · Pradeep Ravikumar
🔗
|
-
|
Finite-Sample Analysis of Off-Policy Natural Actor-Critic With Linear Function Approximation
(
Poster
)
>
|
Zaiwei Chen · sajad khodadadian · Siva Maguluri
🔗
|
-
|
The Importance of Non-Markovianity in Maximum State Entropy Exploration
(
Poster
)
>
|
Mirco Mutti · Riccardo De Santi · Marcello Restelli
🔗
|
-
|
Global Convergence of Multi-Agent Policy Gradient in Markov Potential Games
(
Poster
)
>
|
Stefanos Leonardos · Will Overman · Ioannis Panageas · Georgios Piliouras
🔗
|
-
|
Efficient Inverse Reinforcement Learning of Transferable Rewards
(
Poster
)
>
|
Giorgia Ramponi · Alberto Maria Metelli · Marcello Restelli
🔗
|
-
|
Learning to Observe with Reinforcement Learning
(
Poster
)
>
|
Mehmet Koseoglu · Ece Kunduracioglu · Ayca Ozcelikkale
🔗
|
-
|
Sample Efficient Reinforcement Learning In Continuous State Spaces: A Perspective Beyond Linearity
(
Poster
)
>
|
Dhruv Malik · Aldo Pacchiano · Vishwak Srinivasan · Yuanzhi Li
🔗
|
-
|
Bagged Critic for Continuous Control
(
Poster
)
>
|
Payal Bawa
🔗
|
-
|
Reinforcement Learning in Linear MDPs: Constant Regret and Representation Selection
(
Poster
)
>
|
Matteo Papini · Andrea Tirinzoni · Aldo Pacchiano · Marcello Restelli · Alessandro Lazaric · Matteo Pirotta
🔗
|
-
|
A Fully Problem-Dependent Regret Lower Bound for Finite-Horizon MDPs
(
Poster
)
>
|
Andrea Tirinzoni · Matteo Pirotta · Alessandro Lazaric
🔗
|
-
|
Optimal and instance-dependent oracle inequalities for policy evaluation
(
Poster
)
>
|
Wenlong Mou · Ashwin Pananjady · Martin Wainwright
🔗
|
-
|
Optimistic Exploration with Backward Bootstrapped Bonus for Deep Reinforcement Learning
(
Poster
)
>
|
Chenjia Bai · Lingxiao Wang · Lei Han · Jianye Hao · Animesh Garg · Peng Liu · Zhaoran Wang
🔗
|
-
|
Reward-Weighted Regression Converges to a Global Optimum
(
Poster
)
>
|
Francesco Faccio · Rupesh Kumar Srivastava · Jürgen Schmidhuber
🔗
|
-
|
Comparison and Unification of Three Regularization Methods in Batch Reinforcement Learning
(
Poster
)
>
|
Sarah Rathnam
🔗
|
-
|
Oracle-Efficient Regret Minimization in Factored MDPs with Unknown Structure
(
Poster
)
>
|
Aviv Rosenberg · Yishay Mansour
🔗
|
-
|
Learning Adversarial Markov Decision Processes with Delayed Feedback
(
Poster
)
>
|
Tal Lancewicki · Aviv Rosenberg · Yishay Mansour
🔗
|
-
|
Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability
(
Poster
)
>
|
Dibya Ghosh · Jad Rahme · Aviral Kumar · Amy Zhang · Ryan P. Adams · Sergey Levine
🔗
|
-
|
Statistical Inference with M-Estimators on Adaptively Collected Data
(
Poster
)
>
|
Kelly Zhang · Lucas Janson · Susan Murphy
🔗
|
-
|
Randomized Least Squares Policy Optimization
(
Poster
)
>
|
Haque Ishfaq · Zhuoran Yang · Andrei Lupu · Viet Nguyen · Lewis Liu · Riashat Islam · Zhaoran Wang · Doina Precup
🔗
|
-
|
Gap-Dependent Unsupervised Exploration for Reinforcement Learning
(
Poster
)
>
|
Jingfeng Wu · Vladimir Braverman · Lin Yang
🔗
|
-
|
Online Learning for Stochastic Shortest Path Model via Posterior Sampling
(
Poster
)
>
|
Mehdi Jafarnia · Liyu Chen · Rahul Jain · Haipeng Luo
🔗
|
-
|
Provable Model-based Nonlinear Bandit and Reinforcement Learning: Shelve Optimism, Embrace Virtual Curvature
(
Poster
)
>
|
Kefan Dong · Jiaqi Yang · Tengyu Ma
🔗
|
-
|
Linear Convergence of Entropy-Regularized Natural Policy Gradient with Linear Function Approximation
(
Poster
)
>
|
Semih Cayci · Niao He · R Srikant
🔗
|
-
|
Decentralized Q-Learning in Zero-sum Markov Games
(
Poster
)
>
|
Kaiqing Zhang · David Leslie · Tamer Basar · Asuman Ozdaglar
🔗
|
-
|
Model-based Offline Reinforcement Learning with Local Misspecification
(
Poster
)
>
|
Kefan Dong · Ramtin Keramati · Emma Brunskill
🔗
|
-
|
Nearly Minimax Optimal Regret for Learning Infinite-horizon Average-reward MDPs with Linear Function Approximation
(
Poster
)
>
|
Yue Wu · Dongruo Zhou · Quanquan Gu
🔗
|
-
|
Learning from an Exploring Demonstrator: Optimal Reward Estimation for Bandits
(
Poster
)
>
|
Wenshuo Guo · Kumar Agrawal · Aditya Grover · Vidya Muthukumar · Ashwin Pananjady
🔗
|
-
|
Model-Free Approach to Evaluate Reinforcement Learning Algorithms
(
Poster
)
>
|
Denis Belomestny · Ilya Levin · Eric Moulines · Alexey Naumov · Sergey Samsonov · Veronika Zorina
🔗
|
-
|
Provable RL with Exogenous Distractors via Multistep Inverse Dynamics
(
Poster
)
>
|
Yonathan Efroni · Dipendra Misra · Akshay Krishnamurthy · Alekh Agarwal · John Langford
🔗
|
-
|
Learning Pareto-Optimal Policies in Low-Rank Cooperative Markov Games
(
Poster
)
>
|
Abhimanyu Dubey · Alex `Sandy' Pentland
🔗
|
-
|
Optimal Uniform OPE and Model-based Offline Reinforcement Learning in Time-Homogeneous, Reward-Free and Task-Agnostic Settings
(
Poster
)
>
|
Ming Yin · Yu-Xiang Wang
🔗
|
-
|
Bridging The Gap between Local and Joint Differential Privacy in RL
(
Poster
)
>
|
Evrard Garcelon · Vianney Perchet · Ciara Pike-Burke · Matteo Pirotta
🔗
|
-
|
Near-Optimal Offline Reinforcement Learning via Double Variance Reduction
(
Poster
)
>
|
Ming Yin · Yu Bai · Yu-Xiang Wang
🔗
|
-
|
Mixture of Step Returns in Bootstrapped DQN
(
Poster
)
>
|
PoHan Chiang · Hsuan-Kung Yang · Zhang-Wei Hong · Chun-Yi Lee
🔗
|
-
|
Nearly Optimal Regret for Learning Adversarial MDPs with Linear Function Approximation
(
Poster
)
>
|
Jiafan He · Dongruo Zhou · Quanquan Gu
🔗
|
-
|
Provably efficient exploration-free transfer RL for near-deterministic latent dynamics
(
Poster
)
>
|
Yao Liu · Dipendra Misra · Miroslav Dudik · Robert Schapire
🔗
|
-
|
Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret
(
Poster
)
>
|
Jean Tarbouriech · Jean Tarbouriech · Simon Du · Matteo Pirotta · Michal Valko · Alessandro Lazaric
🔗
|
-
|
A Spectral Approach to Off-Policy Evaluation for POMDPs
(
Poster
)
>
|
Yash Nair · Nan Jiang
🔗
|
-
|
Mind the Gap: Safely Bridging Offline and Online Reinforcement Learning
(
Poster
)
>
|
Wanqiao Xu · Kan Xu · Hamsa Bastani · Osbert Bastani
🔗
|
-
|
Learning Nash Equilibria in Zero-Sum Stochastic Games via Entropy-Regularized Policy Approximation
(
Poster
)
>
|
Yue Guan · Qifan Zhang · Panagiotis Tsiotras
🔗
|
-
|
Invariant Policy Learning: A Causal Perspective
(
Poster
)
>
|
Sorawit Saengkyongam · Nikolaj Thams · Jonas Peters · Niklas Pfister
🔗
|
-
|
A functional mirror ascent view of policy gradient methods with function approximation
(
Poster
)
>
|
Sharan Vaswani · Olivier Bachem · Simone Totaro · Matthieu Geist · Marlos C. Machado · Pablo Samuel Castro · Nicolas Le Roux
🔗
|
-
|
Policy Finetuning: Bridging Sample-Efficient Offline and Online Reinforcement Learning
(
Poster
)
>
|
Tengyang Xie · Nan Jiang · Huan Wang · Caiming Xiong · Yu Bai
🔗
|
-
|
Robust online control with model misspecification
(
Poster
)
>
|
Xinyi Chen · Udaya Ghai · Elad Hazan · Alexandre Megretsky
🔗
|
-
|
Online Sub-Sampling for Reinforcement Learning with General Function Approximation
(
Poster
)
>
|
Dingwen Kong · Ruslan Salakhutdinov · Ruosong Wang · Lin Yang
🔗
|
-
|
Is Pessimism Provably Efficient for Offline RL?
(
Poster
)
>
|
Ying Jin · Zhuoran Yang · Zhaoran Wang
🔗
|
-
|
Topological Experience Replay for Fast Q-Learning
(
Poster
)
>
|
Zhang-Wei Hong · Tao Chen · Yen-Chen Lin · Joni Pajarinen · Pulkit Agrawal
🔗
|
-
|
Nearly Minimax Optimal Reinforcement Learning for Discounted MDPs
(
Poster
)
>
|
Jiafan He · Dongruo Zhou · Quanquan Gu
🔗
|
-
|
A general sample complexity analysis of vanilla policy gradient
(
Poster
)
>
|
Rui Yuan · Robert Gower · Alessandro Lazaric
🔗
|
-
|
The Power of Exploiter: Provable Multi-Agent RL in Large State Spaces
(
Poster
)
>
|
Chi Jin · Qinghua Liu · Tiancheng Yu
🔗
|
-
|
Bellman Eluder Dimension: New Rich Classes of RL Problems, and Sample-Efficient Algorithms
(
Poster
)
>
|
Chi Jin · Qinghua Liu · Sobhan Miryoosefi
🔗
|
-
|
Estimating Optimal Policy Value in Linear Contextual Bandits beyond Gaussianity
(
Poster
)
>
|
Jonathan Lee · Weihao Kong · Aldo Pacchiano · Vidya Muthukumar · Emma Brunskill
🔗
|
-
|
A Short Note on the Relationship of Information Gain and Eluder Dimension
(
Poster
)
>
|
Kaixuan Huang · Sham Kakade · Jason Lee · Qi Lei
🔗
|
-
|
Convergence and Optimality of Policy Gradient Methods in Weakly Smooth Settings
(
Poster
)
>
|
Shunshi Zhang · Murat Erdogdu · Animesh Garg
🔗
|
-
|
Almost Optimal Algorithms for Two-player Markov Games with Linear Function Approximation
(
Poster
)
>
|
Zixiang Chen · Dongruo Zhou · Quanquan Gu
🔗
|
-
|
Improved Estimator Selection for Off-Policy Evaluation
(
Poster
)
>
|
George Tucker
🔗
|
-
|
A Boosting Approach to Reinforcement Learning
(
Poster
)
>
|
Nataly Brukhim · Elad Hazan · Karan Singh
🔗
|
-
|
Learning Stackelberg Equilibria in Sequential Price Mechanisms
(
Poster
)
>
|
Gianluca Brero
🔗
|
-
|
Refined Policy Improvement Bounds for MDPs
(
Poster
)
>
|
Mark Gluzman
🔗
|
-
|
Meta Learning MDPs with linear transition models
(
Poster
)
>
|
Robert Müller · Aldo Pacchiano · Jack Parker-Holder
🔗
|
-
|
The best of both worlds: stochastic and adversarial episodic MDPs with unknown transition
(
Poster
)
>
|
Tiancheng Jin · Longbo Huang · Haipeng Luo
🔗
|
-
|
Identification and Adaptive Control of Markov Jump Systems: Sample Complexity and Regret Bounds
(
Poster
)
>
|
Yahya Sattar · Zhe Du · Davoud Ataee Tarzanagh · Necmiye Ozay · Laura Balzano · Samet Oymak
🔗
|
-
|
Non-Stationary Representation Learning in Sequential Multi-Armed Bandits
(
Poster
)
>
|
Qin Yuzhen · Tommaso Menara · Samet Oymak · ShiNung Ching · Fabio Pasqualetti
🔗
|
-
|
Value-Based Deep Reinforcement Learning Requires Explicit Regularization
(
Poster
)
>
|
Aviral Kumar · Rishabh Agarwal · Aaron Courville · Tengyu Ma · George Tucker · Sergey Levine
🔗
|
-
|
Policy Optimization in Adversarial MDPs: Improved Exploration via Dilated Bonuses
(
Poster
)
>
|
Haipeng Luo · Chen-Yu Wei · Chung-Wei Lee
🔗
|
-
|
On the Sample Complexity of Average-reward MDPs
(
Poster
)
>
|
Yujia Jin
🔗
|
-
|
Finite time analysis of temporal difference learning with linear function approximation: the tail averaged case
(
Poster
)
>
|
Gandharv Patil · Prashanth L.A. · Doina Precup
🔗
|
-
|
Multi-Task Offline Reinforcement Learning with Conservative Data Sharing
(
Poster
)
>
|
Tianhe (Kevin) Yu · Aviral Kumar · Yevgen Chebotar · Karol Hausman · Sergey Levine · Chelsea Finn
🔗
|
-
|
Provably Efficient Multi-Task Reinforcement Learning with Model Transfer
(
Poster
)
>
|
Chicheng Zhang · Zhi Wang
🔗
|
-
|
Bad-Policy Density: A Measure of Reinforcement-Learning Hardness
(
Poster
)
>
|
David Abel · Cameron Allen · Dilip Arumugam · D Ellis Hershkowitz · Michael L. Littman · Lawson Wong
🔗
|
-
|
CRPO: A New Approach for Safe Reinforcement Learning with Convergence Guarantee
(
Poster
)
>
|
Tengyu Xu · Yingbin LIANG · Guanghui Lan
🔗
|
-
|
Sparsity in the Partially Controllable LQR
(
Poster
)
>
|
Yonathan Efroni · Sham Kakade · Akshay Krishnamurthy · Cyril Zhang
🔗
|
-
|
Provable Benefits of Actor-Critic Methods for Offline Reinforcement Learning
(
Poster
)
>
|
Andrea Zanette · Martin Wainwright · Emma Brunskill
🔗
|
-
|
Solving Multi-Arm Bandit Using a Few Bits of Communication
(
Poster
)
>
|
Osama Hanna · Lin Yang · Christina Fragouli
🔗
|
-
|
Implicit Finite-Horizon Approximation for Stochastic Shortest Path
(
Poster
)
>
|
Liyu Chen · Mehdi Jafarnia · Rahul Jain · Haipeng Luo
🔗
|
-
|
On the Theory of Reinforcement Learning with Once-per-Episode Feedback
(
Poster
)
>
|
Niladri Chatterji · Aldo Pacchiano · Peter Bartlett · Michael Jordan
🔗
|
-
|
Sample-Efficient Learning of Stackelberg Equilibria in General-Sum Games
(
Poster
)
>
|
Yu Bai · Chi Jin · Huan Wang · Caiming Xiong
🔗
|