Skip to yearly menu bar Skip to main content

Workshop: Workshop on Reinforcement Learning Theory

A Short Note on the Relationship of Information Gain and Eluder Dimension

Kaixuan Huang · Sham Kakade · Jason Lee · Qi Lei


Eluder dimension and information gain are two widely used methods of complexity measures in bandit and reinforcement learning. Eluder dimension was originally proposed as a general complexity measure of function classes, but the common examples of where it is known to be small are function spaces (vector spaces). In these cases, the primary tool to upper bound the eluder dimension is the elliptic potential lemma. Interestingly, the elliptic potential lemma also features prominently in the analysis of linear bandits/reinforcement learning and their nonparametric generalization, the information gain. We show that this is not a coincidence -- eluder dimension and information gain are equivalent in a precise sense for reproducing kernel Hilbert spaces.

Chat is not available.