Oral
Oral 6D Representation Learning 2
Hall A8
Learning Useful Representations of Recurrent Neural Network Weight Matrices
Vincent Herrmann · Francesco Faccio · Jürgen Schmidhuber
Recurrent Neural Networks (RNNs) are general-purpose parallel-sequential computers. The program of an RNN is its weight matrix. How to learn useful representations of RNN weights that facilitate RNN analysis as well as downstream tasks? While the mechanistic approach directly looks at some RNN's weights to predict its behavior, the functionalist approach analyzes its overall functionality–specifically, its input-output mapping. We consider several mechanistic approaches for RNN weights and adapt the permutation equivariant Deep Weight Space layer for RNNs. Our two novel functionalist approaches extract information from RNN weights by 'interrogating' the RNN through probing inputs. We develop a theoretical framework that demonstrates conditions under which the functionalist approach can generate rich representations that help determine RNN behavior. We create and release the first two 'model zoo' datasets for RNN weight representation learning. One consists of generative models of a class of formal languages, and the other one of classifiers of sequentially processed MNIST digits. With the help of an emulation-based self-supervised learning technique we compare and evaluate the different RNN weight encoding techniques on multiple downstream applications. On the most challenging one, namely predicting which exact task the RNN was trained on, functionalist approaches show clear superiority.
Data-free Neural Representation Compression with Riemannian Neural Dynamics
Zhengqi Pei · Anran Zhang · Shuhui Wang · Xiangyang Ji · Qingming Huang
Neural models are equivalent to dynamic systems from a physics-inspired view, implying that computation on neural networks can be interpreted as the dynamical interactions between neurons. However, existing work models neuronal interaction as a weight-based linear transformation, and the nonlinearity comes from the nonlinear activation functions, which leads to limited nonlinearity and data-fitting ability of the whole neural model. Inspired by Riemannian geometry, we interpret neural structures by projecting neurons onto the Riemannian neuronal state space and model neuronal interaction with Riemannian metric (${\it RieM}$), which provides a more efficient neural representation with higher parameter efficiency. With ${\it RieM}$, we further design a novel data-free neural compression mechanism that does not require additional fine-tuning with real data. Using backbones like ResNet and Vision Transformer, we conduct extensive experiments on datasets such as MNIST, CIFAR-100, ImageNet-1k, and COCO object detection. Empirical results show that, under equal compression rates and computational complexity, models compressed with ${\it RieM}$ achieve superior inference accuracy compared to existing data-free compression methods.
Neural Collapse meets Differential Privacy: Curious behaviors of NoisyGD with Near-Perfect Representation Learning
Chendi Wang · Yuqing Zhu · Weijie Su · Yu-Xiang Wang
A recent study by De et al. (2022) shows that large-scale representation learning through pre-training on a public dataset significantly enhances differentially private (DP) learning in downstream tasks. To explain this, we consider a layer-peeled model in representation learning, resulting in Neural Collapse (NC) phenomena. Within NC, we establish that the misclassification error is independent of dimension when the distance between actual and ideal features is below a threshold. We empirically evaluate feature quality in the last layer under different pre-trained models, showing that a more powerful pre-trained model improves feature representation. Moreover, we show that DP fine-tuning is less robust compared to non-DP fine-tuning, especially with perturbations. Supported by theoretical analyses and experiments, we suggest strategies like feature normalization and dimension reduction methods such as PCA to enhance DP fine-tuning robustness. Conducting PCA on last-layer features significantly improves testing accuracy.
Contrasting Multiple Representations with the Multi-Marginal Matching Gap
Zoe Piran · Michal Klein · James Thornton · Marco Cuturi
Learning meaningful representations of complex objects that can be seen through multiple ($k\geq 3$) views or modalities is a core task in machine learning. Existing methods use losses originally intended for paired views, and extend them to $k$ views, either by instantiating $\tfrac12k(k-1)$ loss-pairs, or by using reduced embeddings, following a *one vs. average-of-rest* strategy. We propose the multi-marginal matching gap (M3G), a loss that borrows tools from multi-marginal optimal transport (MM-OT) theory to simultaneously incorporate all $k$ views. Given a batch of $n$ points, each seen as a $k$-tuple of views subsequently transformed into $k$ embeddings, our loss contrasts the cost of matching these $n$ ground-truth $k$-tuples with the MM-OT polymatching cost, which seeks $n$ optimally arranged $k$-tuples chosen within these $n\times k$ vectors. While the exponential complexity $O(n^k$) of the MM-OT problem may seem daunting, we show in experiments that a suitable generalization of the Sinkhorn algorithm for that problem can scale to, e.g., $k=3\sim 6$ views using mini-batches of size $64~\sim128$. Our experiments demonstrate improved performance over multiview extensions of pairwise losses, for both self-supervised and multimodal tasks.