Oral
Oral 6F Experimental Design and Simulation
Lehar 1-4
Active Adaptive Experimental Design for Treatment Effect Estimation with Covariate Choice
Masahiro Kato · Oga Akihiro · Wataru Komatsubara · Ryo Inokuchi
This study designs an adaptive experiment for efficiently estimating average treatment effects (ATEs). In each round of our adaptive experiment, an experimenter sequentially samples an experimental unit, assigns a treatment, and observes the corresponding outcome immediately. At the end of the experiment, the experimenter estimates an ATE using the gathered samples. The objective is to estimate the ATE with a smaller asymptotic variance. Existing studies have designed experiments that adaptively optimize the propensity score (treatment-assignment probability). As a generalization of such an approach, we propose optimizing the covariate density as well as the propensity score. First, we derive the efficient covariate density and propensity score that minimize the semiparametric efficiency bound and find that optimizing both covariate density and propensity score minimizes the semiparametric efficiency bound more effectively than optimizing only the propensity score. Next, we design an adaptive experiment using the efficient covariate density and propensity score sequentially estimated during the experiment. Lastly, we propose an ATE estimator whose asymptotic variance aligns with the minimized semiparametric efficiency bound.
All-in-one simulation-based inference
Manuel Gloeckler · Michael Deistler · Christian Weilbach · Frank Wood · Jakob Macke
Amortized Bayesian inference trains neural networks to solve stochastic inference problems using model simulations, thereby making it possible to rapidly perform Bayesian inference for any newly observed data. However, current simulation-based amortized inference methods are simulation-hungry and inflexible: They require the specification of a fixed parametric prior, simulator, and inference tasks ahead of time. Here, we present a new amortized inference method---the Simformer---which overcomes these limitations. By training a probabilistic diffusion model with transformer architectures, the Simformer outperforms current state-of-the-art amortized inference approaches on benchmark tasks and is substantially more flexible: It can be applied to models with function-valued parameters, it can handle inference scenarios with missing or unstructured data, and it can sample arbitrary conditionals of the joint distribution of parameters and data, including both posterior and likelihood. We showcase the performance and flexibility of the Simformer on simulators from ecology, epidemiology, and neuroscience, and demonstrate that it opens up new possibilities and application domains for amortized Bayesian inference on simulation-based models.
Privacy Preserving Adaptive Experiment Design
Jiachun Li · Kaining Shi · David Simchi-Levi
Adaptive experiment is widely adopted to estimate conditional average treatment effect (CATE) in clinical trials and many other scenarios. While the primary goal in experiment is to maximize estimation accuracy, due to the imperative of social welfare, it's also crucial to provide treatment with superior outcomes to patients, which is measured by regret in contextual bandit framework. Furthermore, privacy concerns arise in clinical scenarios containing sensitive data like patients health records. Therefore, it's essential for the treatment allocation mechanism to incorporate robust privacy protection measures. In this paper, we investigate the tradeoff between loss of social welfare and statistical power of CATE estimation in contextual bandit experiment. We propose a matched upper and lower bound for the multi-objective optimization problem, and then adopt the concept of Pareto optimality to mathematically characterize the optimality condition. Furthermore, we propose differentially private algorithms which still matches the lower bound, showing that privacy is "almost free". Additionally, we derive the asymptotic normality of the estimator, which is essential in statistical inference and hypothesis testing.
Environment Design for Inverse Reinforcement Learning
Thomas Kleine Buening · Victor Villin · Christos Dimitrakakis
Learning a reward function from demonstrations suffers from low sample-efficiency. Even with abundant data, current inverse reinforcement learning methods that focus on learning from a single environment can fail to handle slight changes in the environment dynamics. We tackle these challenges through adaptive environment design. In our framework, the learner repeatedly interacts with the expert, with the former selecting environments to identify the reward function as quickly as possible from the expert’s demonstrations in said environments. This results in improvements in both sample-efficiency and robustness, as we show experimentally, for both exact and approximate inference.