Skip to yearly menu bar Skip to main content


Oral

Oral 2B Positions on AI Opportunities and Risks for Society

Hall A1
Tue 23 Jul 7:30 a.m. PDT — 8:30 a.m. PDT
Abstract:
Chat is not available.

Tue 23 July 7:30 - 7:45 PDT

Position: Technical Research and Talent is Needed for Effective AI Governance

Anka Reuel · Lisa Soder · Benjamin Bucknall · Trond Undheim

In light of recent advancements in AI capabilities and the increasingly widespread integration of AI systems into society, governments worldwide are actively seeking to mitigate the potential harms and risks associated with these technologies through regulation and other governance tools. However, there exist significant gaps between governance aspirations and the current state of the technical tooling necessary for their realisation. In this position paper, we survey policy documents published by public-sector institutions in the EU, US, and China to highlight specific areas of disconnect between the technical requirements necessary for enacting proposed policy actions, and the current technical state of the art. Our analysis motivates a call for tighter integration of the AI/ML research community within AI governance in order to i) catalyse technical research aimed at bridging the gap between current and supposed technical underpinnings of regulatory action, as well as ii) increase the level of technical expertise within governing institutions so as to inform and guide effective governance of AI.

Tue 23 July 7:45 - 8:00 PDT

Position: AI-Powered Autonomous Weapons Risk Geopolitical Instability and Threaten AI Research

Riley Simmons-Edler · Ryan Badman · Shayne Longpre · Kanaka Rajan

The recent embrace of machine learning (ML) in the development of autonomous weapons systems (AWS) creates serious risks to geopolitical stability and the free exchange of ideas in AI research. This topic has received comparatively little attention of late compared to risks stemming from superintelligent artificial general intelligence (AGI), but requires fewer assumptions about the course of technological development and is thus a nearer-future issue. ML is already enabling the substitution of AWS for human soldiers in many battlefield roles, reducing the upfront human cost, and thus political cost, of waging offensive war. In the case of peer adversaries, this increases the likelihood of "low intensity" conflicts which risk escalation to broader warfare. In the case of non-peer adversaries, it reduces the domestic blowback to wars of aggression. This effect can occur regardless of other ethical issues around the use of military AI such as the risk of civilian casualties, and does not require any superhuman AI capabilities. Further, the military value of AWS raises the specter of an AI-powered arms race and the misguided imposition of national security restrictions on AI research. Our goal in this paper is to raise awareness among the public and ML researchers on the near-future risks posed by full or near-full autonomy in military technology, and we provide regulatory suggestions to mitigate these risks. We call upon AI policy experts and the defense AI community in particular to embrace transparency and caution in their development and deployment of AWS to avoid the negative effects on global stability and AI research that we highlight here.

Tue 23 July 8:00 - 8:15 PDT

Position: Near to Mid-term Risks and Opportunities of Open-Source Generative AI

Francisco Eiras · Aleksandar Petrov · Bertie Vidgen · Christian Schroeder de Witt · Fabio Pizzati · Katherine Elkins · Supratik Mukhopadhyay · Adel Bibi · Botos Csaba · Fabro Steibel · Fazl Barez · Genevieve Smith · Gianluca Guadagni · Jon Chun · Jordi Cabot · Joseph Marvin Imperial · Juan Arturo Nolazco Flores · Lori Landay · Matthew T Jackson · Paul Röttger · Phil Torr · Trevor Darrell · Yong Suk Lee · Jakob Foerster

In the next few years, applications of Generative AI are expected to revolutionize a number of different areas, ranging from science & medicine to education. The potential for these seismic changes has triggered a lively debate about potential risks and resulted in calls for tighter regulation, in particular from some of the major tech companies who are leading in AI development. While regulation is important, it is key that it does not put at risk the budding field of open-source Generative AI. We argue for the responsible open sourcing of generative AI models in the near and medium term. To set the stage, we first introduce an AI openness taxonomy system and apply it to 40 current large language models. We then outline differential benefits and risks of open versus closed source AI and present potential risk mitigation, ranging from best practices to calls for technical and scientific contributions. We hope that this report will add a much needed missing voice to the current public discourse on near to mid-term AI safety and other societal impact.

Tue 23 July 8:15 - 8:30 PDT

Position: On the Societal Impact of Open Foundation Models

Sayash Kapoor · Rishi Bommasani · Kevin Klyman · Shayne Longpre · Ashwin Ramaswami · Peter Cihon · Aspen Hopkins · Kevin Bankston · Stella Biderman · Miranda Bogen · Rumman Chowdhury · Alex Engler · Peter Henderson · Yacine Jernite · Seth Lazar · Stefano Maffulli · Alondra Nelson · Joelle Pineau · Aviya Skowron · Dawn Song · Victor Storchan · Daniel Zhang · Daniel Ho · Percy Liang · Arvind Narayanan

Foundation models are powerful technologies: how they are released publicly directly shapes their societal impact. In this position paper, we focus on open foundation models, defined here as those with broadly available model weights (e.g., Llama 3, Stable Diffusion XL). We identify five distinctive properties (e.g., greater customizability, poor monitoring) that mediate their benefits and risks. Open foundation models present significant benefits, with some caveats, that span innovation, competition, the distribution of decision-making power, and transparency. To understand their risks of misuse, we design a risk assessment framework for analyzing their marginal risk. Across several misuse vectors (e.g., cyberattacks, bioweapons), we find that current research is insufficient to effectively characterize the marginal risk of open foundation models relative to pre-existing technologies. The framework helps explain why the marginal risk is low in some cases, clarifies disagreements about misuse risks by revealing that past work has focused on different subsets of the framework with different assumptions, and articulates a way forward for more constructive debate. Overall, our work helps support a more grounded assessment of the societal impact of open foundation models by outlining what research is needed to empirically validate their theoretical benefits and risks.