Oral
Oral 1D Video
Hall A8
Genie: Generative Interactive Environments
Jake Bruce · Michael Dennis · Ashley Edwards · Jack Parker-Holder · Yuge Shi · Edward Hughes · Matthew Lai · Aditi Mavalankar · Richie Steigerwald · Chris Apps · Yusuf Aytar · Sarah Bechtle · Feryal Behbahani · Stephanie Chan · Nicolas Heess · Lucy Gonzalez · Simon Osindero · Sherjil Ozair · Scott Reed · Jingwei Zhang · Konrad Zolna · Jeff Clune · Nando de Freitas · Satinder Singh · Tim Rocktäschel
We introduce Genie, the first generative interactive environment trained in an unsupervised manner from unlabelled Internet videos. The model can be prompted to generate an endless variety of action-controllable virtual worlds described through text, synthetic images, photographs, and even sketches. At 11B parameters, Genie can be considered a foundation world model. It is comprised of a spatiotemporal video tokenizer, an autoregressive dynamics model, and a simple and scalable latent action model. Genie enables users to act in the generated environments on a frame-by-frame basis despite training without any ground-truth action labels or other domain specific requirements typically found in the world model literature. Further the resulting learned latent action space facilitates training agents to imitate behaviors from unseen videos, opening the path for training generalist agents of the future.
Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization
Yang Jin · Zhicheng Sun · Kun Xu · Kun Xu · Liwei Chen · Hao Jiang · Quzhe Huang · Chengru Song · Yuliang Liu · Di ZHANG · Yang Song · Kun Gai · Yadong Mu
In light of recent advances in multimodal Large Language Models (LLMs), there is increasing attention to scaling them from image-text data to more informative real-world videos. Compared to static images, video poses unique challenges for effective large-scale pre-training due to the modeling of its spatiotemporal dynamics. In this paper, we address such limitations in video-language pre-training with an efficient video decomposition that represents each video as keyframes and temporal motions. These are then adapted to an LLM using well-designed tokenizers that discretize visual and temporal information as a few tokens, thus enabling unified generative pre-training of videos, images, and text. At inference, the generated tokens from the LLM are carefully recovered to the original continuous pixel space to create various video content. Our proposed framework is both capable of comprehending and generating image and video content, as demonstrated by its competitive performance across 13 multimodal benchmarks in image and video understanding and generation. Our code and models are available at https://video-lavit.github.io.
Video-of-Thought: Step-by-Step Video Reasoning from Perception to Cognition
Hao Fei · Shengqiong Wu · Wei Ji · Hanwang Zhang · Meishan Zhang · Mong-Li Lee · Wynne Hsu
Existing research of video understanding still struggles to achieve in-depth comprehension and reasoning in complex videos, primarily due to the under-exploration of two key bottlenecks: fine-grained spatial-temporal perceptive understanding and cognitive-level video scene comprehension. This paper bridges the gap by presenting a novel solution. We first introduce a novel video Multimodal Large Language Model (MLLM), MotionEpic, which achieves fine-grained pixel-level spatial-temporal video grounding by integrating video spatial-temporal scene graph (STSG) representation. Building upon MotionEpic, we then develop a Video-of-Thought (VoT) reasoning framework. VoT inherits the Chain-of-Thought (CoT) core, breaking down a complex task into simpler and manageable sub-problems, and addressing them step-by-step from a low-level pixel perception to high-level cognitive interpretation. Extensive experiments across various complex video QA benchmarks demonstrate that our overall framework strikingly boosts existing state-of-the-art. To our knowledge, this is the first attempt at successfully implementing the CoT technique for achieving human-level video reasoning, where we show great potential in extending it to a wider range of video understanding scenarios. Systems and codes will be open later.
VideoPoet: A Large Language Model for Zero-Shot Video Generation
Dan Kondratyuk · Lijun Yu · Xiuye Gu · Jose Lezama · Jonathan Huang · Grant Schindler · Rachel Hornung · Vighnesh N Birodkar · Jimmy Yan · Ming-Chang Chiu · Krishna Somandepalli · Hassan Akbari · Yair Alon · Yong Cheng · Joshua V Dillon · Agrim Gupta · Meera Hahn · Anja Hauth · David Hendon · Alonso Martinez · David Minnen · Mikhail Sirotenko · Kihyuk Sohn · Xuan Yang · Hartwig Adam · Ming-Hsuan Yang · Irfan Essa · Huisheng Wang · David Ross · Bryan Seybold · Lu Jiang
We present VideoPoet, a language model capable of synthesizing high-quality video from a large variety of conditioning signals. VideoPoet employs a decoder-only transformer architecture that processes multimodal inputs -- including images, videos, text, and audio. The training protocol follows that of Large Language Models (LLMs), consisting of two stages: pretraining and task-specific adaptation. During pretraining, VideoPoet incorporates a mixture of multimodal generative objectives within an autoregressive Transformer framework. The pretrained LLM serves as a foundation that can be adapted for a range of video generation tasks. We present empirical results demonstrating the model's state-of-the-art capabilities in zero-shot video generation, specifically highlighting the ability to generate high-fidelity motions. Project page: http://sites.research.google/videopoet/