firstbacksecondback
124 Results
Poster
|
Thu 4:30 |
Total Variation Distance Meets Probabilistic Inference Arnab Bhattacharyya · Sutanu Gayen · Kuldeep S. Meel · Dimitrios Myrisiotis · A. Pavan · N. Vinodchandran |
|
Poster
|
Tue 2:30 |
An Iterative Min-Min Optimization Method for Sparse Bayesian Learning Yasen Wang · Junlin Li · Zuogong Yue · Ye Yuan |
|
Poster
|
Thu 2:30 |
Stochastic Localization via Iterative Posterior Sampling Louis Grenioux · Maxence Noble · Marylou Gabrié · Alain Oliviero Durmus |
|
Poster
|
Thu 4:30 |
Variational Learning is Effective for Large Deep Networks Yuesong Shen · Nico Daheim · Bai Cong · Peter Nickl · Gian Maria Marconi · Bazan Raoul · Rio Yokota · Iryna Gurevych · Daniel Cremers · Khan Emtiyaz · Thomas Moellenhoff |
|
Poster
|
Wed 4:30 |
Random matrix theory improved Fréchet mean of symmetric positive definite matrices Florent Bouchard · Ammar Mian · Malik TIOMOKO · Guillaume GINOLHAC · Frederic Pascal |
|
Poster
|
Thu 4:30 |
Particle Denoising Diffusion Sampler Angus Phillips · Hai-Dang Dau · Michael Hutchinson · Valentin De Bortoli · George Deligiannidis · Arnaud Doucet |
|
Poster
|
Tue 4:30 |
Improving Neural Additive Models with Bayesian Principles Kouroche Bouchiat · Alexander Immer · Hugo Yèche · Gunnar Ratsch · Vincent Fortuin |
|
Workshop
|
Population-level Dark Energy Constraints from Strong Gravitational Lensing using Simulation-Based Inference Sreevani Jarugula · Brian Nord · Abhijith Gandrakota · Aleksandra Ciprijanovic |
||
Poster
|
Wed 2:30 |
Stochastic Quantum Sampling for Non-Logconcave Distributions and Estimating Partition Functions Guneykan Ozgul · Xiantao Li · Mehrdad Mahdavi · Chunhao Wang |
|
Poster
|
Wed 2:30 |
Partially Stochastic Infinitely Deep Bayesian Neural Networks Sergio Calvo Ordoñez · Matthieu Meunier · Francesco Piatti · Yuantao Shi |
|
Poster
|
Thu 2:30 |
Path-Guided Particle-based Sampling Mingzhou Fan · Ruida Zhou · Chao Tian · Xiaoning Qian |
|
Poster
|
Wed 4:30 |
Connecting the Dots: Is Mode-Connectedness the Key to Feasible Sample-Based Inference in Bayesian Neural Networks? Emanuel Sommer · Lisa Wimmer · Theodore Papamarkou · Ludwig Bothmann · Bernd Bischl · David Rügamer |