Skip to yearly menu bar Skip to main content


Search All 2024 Events
 

124 Results

<<   <   Page 10 of 11   >   >>
Poster
Thu 4:30 Total Variation Distance Meets Probabilistic Inference
Arnab Bhattacharyya · Sutanu Gayen · Kuldeep S. Meel · Dimitrios Myrisiotis · A. Pavan · N. Vinodchandran
Poster
Tue 2:30 An Iterative Min-Min Optimization Method for Sparse Bayesian Learning
Yasen Wang · Junlin Li · Zuogong Yue · Ye Yuan
Poster
Thu 2:30 Stochastic Localization via Iterative Posterior Sampling
Louis Grenioux · Maxence Noble · Marylou Gabrié · Alain Oliviero Durmus
Poster
Thu 4:30 Variational Learning is Effective for Large Deep Networks
Yuesong Shen · Nico Daheim · Bai Cong · Peter Nickl · Gian Maria Marconi · Bazan Raoul · Rio Yokota · Iryna Gurevych · Daniel Cremers · Khan Emtiyaz · Thomas Moellenhoff
Poster
Wed 4:30 Random matrix theory improved Fréchet mean of symmetric positive definite matrices
Florent Bouchard · Ammar Mian · Malik TIOMOKO · Guillaume GINOLHAC · Frederic Pascal
Poster
Thu 4:30 Particle Denoising Diffusion Sampler
Angus Phillips · Hai-Dang Dau · Michael Hutchinson · Valentin De Bortoli · George Deligiannidis · Arnaud Doucet
Poster
Tue 4:30 Improving Neural Additive Models with Bayesian Principles
Kouroche Bouchiat · Alexander Immer · Hugo Yèche · Gunnar Ratsch · Vincent Fortuin
Workshop
Population-level Dark Energy Constraints from Strong Gravitational Lensing using Simulation-Based Inference
Sreevani Jarugula · Brian Nord · Abhijith Gandrakota · Aleksandra Ciprijanovic
Poster
Wed 2:30 Stochastic Quantum Sampling for Non-Logconcave Distributions and Estimating Partition Functions
Guneykan Ozgul · Xiantao Li · Mehrdad Mahdavi · Chunhao Wang
Poster
Wed 2:30 Partially Stochastic Infinitely Deep Bayesian Neural Networks
Sergio Calvo Ordoñez · Matthieu Meunier · Francesco Piatti · Yuantao Shi
Poster
Thu 2:30 Path-Guided Particle-based Sampling
Mingzhou Fan · Ruida Zhou · Chao Tian · Xiaoning Qian
Poster
Wed 4:30 Connecting the Dots: Is Mode-Connectedness the Key to Feasible Sample-Based Inference in Bayesian Neural Networks?
Emanuel Sommer · Lisa Wimmer · Theodore Papamarkou · Ludwig Bothmann · Bernd Bischl · David Rügamer