Skip to yearly menu bar Skip to main content


Poster

Subhomogeneous Deep Equilibrium Models

Pietro Sittoni · Francesco Tudisco

Hall C 4-9 #814
[ ] [ Paper PDF ]
[ Poster
Thu 25 Jul 2:30 a.m. PDT — 4 a.m. PDT

Abstract:

Implicit-depth neural networks have grown as powerful alternatives to traditional networks in various applications in recent years. However, these models often lack guarantees of existence and uniqueness, raising stability, performance, and reproducibility issues. In this paper, we present a new analysis of the existence and uniqueness of fixed points for implicit-depth neural networks based on the concept of subhomogeneous operators and the nonlinear Perron-Frobenius theory. Compared to previous similar analyses, our theory allows for weaker assumptions on the parameter matrices, thus yielding a more flexible framework for well-defined implicit networks. We illustrate the performance of the resulting subhomogeneous networks on feedforward, convolutional, and graph neural network examples

Chat is not available.