Skip to yearly menu bar Skip to main content


Poster

Reinformer: Max-Return Sequence Modeling for offline RL

Zifeng Zhuang · Dengyun Peng · Jinxin Liu · Ziqi Zhang · Donglin Wang


Abstract:

As a data-driven paradigm, offline reinforcement learning (RL) has been formulated as sequence modeling that conditions on the hindsight information including returns, goal or future trajectory. Although promising, this supervised paradigm overlooks the core objective of RL that maximizing the return.This overlook directly leads to the lack of trajectory stitching capability that affects the sequence model learning from sub-optimal data. In this work, we introduce the concept of max-return sequence modeling which integrates the goal of maximizing returns into existing sequence models. We propose \textbf{Rein}\textbf{\textit{for}}ced Trans\textbf{\textit{for}mer} (Reinformer), indicating the sequence model is reinforced by the RL objective. Reinformer additionally incorporates the objective of maximizing returns in the training phase, aiming to predict the maximum future return within the distribution.During inference, this in-distribution maximum return will guide the selection of optimal actions. Empirically, max-return sequence modeling is competitive with classical RL methods on the D4RL benchmark and outperforms state-of-the-art sequence model particularly in trajectory stitching ability.

Live content is unavailable. Log in and register to view live content