Workshop
|
|
Mathematical Theory of Adversarial Deep Learning
|
|
Oral
|
Tue 20:54
|
Tighter Information-Theoretic Generalization Bounds from Supersamples
Ziqiao Wang · Yongyi Mao
|
|
Poster
|
Tue 17:00
|
Tighter Information-Theoretic Generalization Bounds from Supersamples
Ziqiao Wang · Yongyi Mao
|
|
Workshop
|
|
Information-Theoretic Generalization Bounds for the Subtask Problem
Firas Laakom · Yuheng Bu · Moncef Gabbouj
|
|
Workshop
|
|
Mathematical Theory of Adversarial Deep Learning
Xiao-Shan Gao · Lijia Yu · Shuang Liu
|
|
Poster
|
Tue 14:00
|
An Information-Theoretic Analysis of Nonstationary Bandit Learning
Seungki Min · Daniel Russo
|
|
Poster
|
Thu 13:30
|
CO-BED: Information-Theoretic Contextual Optimization via Bayesian Experimental Design
Desi Ivanova · Joel Jennings · Tom Rainforth · Cheng Zhang · Adam Foster
|
|
Oral
|
Tue 20:38
|
Information-Theoretic State Space Model for Multi-View Reinforcement Learning
HyeongJoo Hwang · Seokin Seo · Youngsoo Jang · Sungyoon Kim · Geon-Hyeong Kim · Seunghoon Hong · Kee-Eung Kim
|
|
Poster
|
Thu 16:30
|
Information-Theoretic State Space Model for Multi-View Reinforcement Learning
HyeongJoo Hwang · Seokin Seo · Youngsoo Jang · Sungyoon Kim · Geon-Hyeong Kim · Seunghoon Hong · Kee-Eung Kim
|
|
Workshop
|
Fri 12:30
|
Lea Schönherr
Lea Schönherr
|
|
Poster
|
Tue 17:00
|
Revisiting Gradient Clipping: Stochastic bias and tight convergence guarantees
Anastasiia Koloskova · Hadrien Hendrikx · Sebastian Stich
|
|
Poster
|
Wed 17:00
|
Nonlinear Causal Discovery with Latent Confounders
David Kaltenpoth · Jilles Vreeken
|
|