Skip to yearly menu bar Skip to main content


Search All 2023 Events
 

21 Results

<<   <   Page 2 of 2   >>   >
Poster
Tue 17:00 Function-Space Regularization in Neural Networks: A Probabilistic Perspective
Tim G. J. Rudner · Sanyam Kapoor · Shikai Qiu · Andrew Wilson
Poster
Tue 14:00 Practical and Matching Gradient Variance Bounds for Black-Box Variational Bayesian Inference
Kyurae Kim · Kaiwen Wu · Jisu Oh · Jacob Gardner
Oral
Thu 18:56 Practical and Matching Gradient Variance Bounds for Black-Box Variational Bayesian Inference
Kyurae Kim · Kaiwen Wu · Jisu Oh · Jacob Gardner
Workshop
Breaking the Curse of Multiagents in a Large State Space: RL in Markov Games with Independent Linear Function Approximation
Qiwen Cui · Kaiqing Zhang · Simon Du
Workshop
BayesDAG: Gradient-Based Posterior Sampling for Causal Discovery
Yashas Annadani · Nick Pawlowski · Joel Jennings · Stefan Bauer · Cheng Zhang · Wenbo Gong
Poster
Thu 16:30 Robust One-Class Classification with Signed Distance Function using 1-Lipschitz Neural Networks
Louis Bethune · Paul Novello · Guillaume Coiffier · Thibaut Boissin · Mathieu Serrurier · Quentin VINCENOT · Andres Troya-Galvis
Poster
Thu 13:30 Variational Mixture of HyperGenerators for Learning Distributions over Functions
Batuhan Koyuncu · Pablo Sanchez Martin · Ignacio Peis · Pablo Olmos · Isabel Valera
Workshop
PITS: Variational Pitch Inference Without Fundamental Frequency for End-to-End Pitch-Controllable TTS
Junhyeok Lee · Wonbin Jung · Hyunjae Cho · Jaeyeon Kim · Jaehwan Kim
Workshop
Dimensionality Reduction as Probabilistic Inference
Aditya Ravuri · Francisco Vargas · Vidhi Ramesh · Neil Lawrence