Poster
|
Tue 17:00
|
Function-Space Regularization in Neural Networks: A Probabilistic Perspective
Tim G. J. Rudner · Sanyam Kapoor · Shikai Qiu · Andrew Wilson
|
|
Poster
|
Tue 14:00
|
Practical and Matching Gradient Variance Bounds for Black-Box Variational Bayesian Inference
Kyurae Kim · Kaiwen Wu · Jisu Oh · Jacob Gardner
|
|
Oral
|
Thu 18:56
|
Practical and Matching Gradient Variance Bounds for Black-Box Variational Bayesian Inference
Kyurae Kim · Kaiwen Wu · Jisu Oh · Jacob Gardner
|
|
Workshop
|
|
Breaking the Curse of Multiagents in a Large State Space: RL in Markov Games with Independent Linear Function Approximation
Qiwen Cui · Kaiqing Zhang · Simon Du
|
|
Workshop
|
|
BayesDAG: Gradient-Based Posterior Sampling for Causal Discovery
Yashas Annadani · Nick Pawlowski · Joel Jennings · Stefan Bauer · Cheng Zhang · Wenbo Gong
|
|
Poster
|
Thu 16:30
|
Robust One-Class Classification with Signed Distance Function using 1-Lipschitz Neural Networks
Louis Bethune · Paul Novello · Guillaume Coiffier · Thibaut Boissin · Mathieu Serrurier · Quentin VINCENOT · Andres Troya-Galvis
|
|
Poster
|
Thu 13:30
|
Variational Mixture of HyperGenerators for Learning Distributions over Functions
Batuhan Koyuncu · Pablo Sanchez Martin · Ignacio Peis · Pablo Olmos · Isabel Valera
|
|
Workshop
|
|
PITS: Variational Pitch Inference Without Fundamental Frequency for End-to-End Pitch-Controllable TTS
Junhyeok Lee · Wonbin Jung · Hyunjae Cho · Jaeyeon Kim · Jaehwan Kim
|
|
Workshop
|
|
Dimensionality Reduction as Probabilistic Inference
Aditya Ravuri · Francisco Vargas · Vidhi Ramesh · Neil Lawrence
|
|