firstbacksecondback
22 Results
Poster
|
Tue 17:00 |
Mitigating the Effects of Non-Identifiability on Inference for Bayesian Neural Networks with Latent Variables Yaniv Yacoby · Weiwei Pan · Finale Doshi-Velez |
|
Oral
|
Thu 18:56 |
Practical and Matching Gradient Variance Bounds for Black-Box Variational Bayesian Inference Kyurae Kim · Kaiwen Wu · Jisu Oh · Jacob Gardner |
|
Poster
|
Tue 14:00 |
Practical and Matching Gradient Variance Bounds for Black-Box Variational Bayesian Inference Kyurae Kim · Kaiwen Wu · Jisu Oh · Jacob Gardner |
|
Workshop
|
Exploring Exchangeable Dataset Amortization for Bayesian Posterior Inference Sarthak Mittal · Niels Bracher · Guillaume Lajoie · Priyank Jaini · Marcus Brubaker |
||
Workshop
|
Collapsed Inference for Bayesian Deep Learning Zhe Zeng · Guy Van den Broeck |
||
Workshop
|
GFlowNets for Causal Discovery: an Overview Dragos Cristian Manta · Edward Hu · Yoshua Bengio |
||
Workshop
|
Dimensionality Reduction as Probabilistic Inference Aditya Ravuri · Francisco Vargas · Vidhi Ramesh · Neil Lawrence |
||
Workshop
|
Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network Tristan Deleu · Mizu Nishikawa-Toomey · Jithendaraa Subramanian · Nikolay Malkin · Laurent Charlin · Yoshua Bengio |
||
Workshop
|
BayesDAG: Gradient-Based Posterior Sampling for Causal Discovery Yashas Annadani · Nick Pawlowski · Joel Jennings · Stefan Bauer · Cheng Zhang · Wenbo Gong |
||
Workshop
|
Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment Effect Estimation Chris Emezue · Alexandre Drouin · Tristan Deleu · Stefan Bauer · Yoshua Bengio |