Skip to yearly menu bar Skip to main content


Search All 2023 Events
 

22 Results

<<   <   Page 2 of 2   >>   >
Poster
Tue 17:00 Mitigating the Effects of Non-Identifiability on Inference for Bayesian Neural Networks with Latent Variables
Yaniv Yacoby · Weiwei Pan · Finale Doshi-Velez
Oral
Thu 18:56 Practical and Matching Gradient Variance Bounds for Black-Box Variational Bayesian Inference
Kyurae Kim · Kaiwen Wu · Jisu Oh · Jacob Gardner
Poster
Tue 14:00 Practical and Matching Gradient Variance Bounds for Black-Box Variational Bayesian Inference
Kyurae Kim · Kaiwen Wu · Jisu Oh · Jacob Gardner
Workshop
Exploring Exchangeable Dataset Amortization for Bayesian Posterior Inference
Sarthak Mittal · Niels Bracher · Guillaume Lajoie · Priyank Jaini · Marcus Brubaker
Workshop
Collapsed Inference for Bayesian Deep Learning
Zhe Zeng · Guy Van den Broeck
Workshop
GFlowNets for Causal Discovery: an Overview
Dragos Cristian Manta · Edward Hu · Yoshua Bengio
Workshop
Dimensionality Reduction as Probabilistic Inference
Aditya Ravuri · Francisco Vargas · Vidhi Ramesh · Neil Lawrence
Workshop
Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network
Tristan Deleu · Mizu Nishikawa-Toomey · Jithendaraa Subramanian · Nikolay Malkin · Laurent Charlin · Yoshua Bengio
Workshop
BayesDAG: Gradient-Based Posterior Sampling for Causal Discovery
Yashas Annadani · Nick Pawlowski · Joel Jennings · Stefan Bauer · Cheng Zhang · Wenbo Gong
Workshop
Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment Effect Estimation
Chris Emezue · Alexandre Drouin · Tristan Deleu · Stefan Bauer · Yoshua Bengio