Skip to yearly menu bar Skip to main content


Semiparametrically Efficient Off-Policy Evaluation in Linear Markov Decision Processes

Chuhan Xie · Wenhao Yang · Zhihua Zhang

Exhibit Hall 1 #701
[ ]
[ PDF [ Poster

Abstract: We study semiparametrically efficient estimation in off-policy evaluation (OPE) where the underlying Markov decision process (MDP) is linear with a known feature map. We characterize the variance lower bound for regular estimators in the linear MDP setting and propose an efficient estimator whose variance achieves that lower bound. Consistency and asymptotic normality of our estimator are established under mild conditions, which merely requires the only infinite-dimensional nuisance parameter to be estimated at a $n^{-1/4}$ convergence rate. We also construct an asymptotically valid confidence interval for statistical inference and conduct simulation studies to validate our results. To our knowledge, this is the first work that concerns efficient estimation in the presence of a known structure of MDPs in the OPE literature.

Chat is not available.