Skip to yearly menu bar Skip to main content


Provably Invariant Learning without Domain Information

Xiaoyu Tan · Yong LIN · Shengyu Zhu · Chao Qu · Xihe Qiu · Xu Yinghui · Peng Cui · Yuan Qi

Exhibit Hall 1 #702
[ ]
[ PDF [ Poster


Typical machine learning applications always assume the data follows independent and identically distributed (IID) assumptions. In contrast, this assumption is frequently violated in real-world circumstances, leading to the Out-of-Distribution (OOD) generalization problem and a major drop in model robustness. To mitigate this issue, the invariant learning technique is leveraged to distinguish between spurious features and invariant features among all input features and to train the model purely on the basis of the invariant features. Numerous invariant learning strategies imply that the training data should contain domain information. Such information includes the environment index or auxiliary information acquired from prior knowledge. However, acquiring these information is typically impossible in practice. In this study, we present TIVA for environment-independent invariance learning, which requires no environment-specific information in training data. We discover and prove that, given certain mild data conditions, it is possible to train an environment partitioning policy based on attributes that are independent of the targets and then conduct invariant risk minimization. We examine our method in comparison to other baseline methods, which demonstrate superior performance and excellent robustness under OOD, using multiple benchmarks.

Chat is not available.