Skip to yearly menu bar Skip to main content


Delving into Noisy Label Detection with Clean Data

Chenglin Yu · Xinsong Ma · Weiwei Liu

Exhibit Hall 1 #730

Abstract: A critical element of learning with noisy labels is noisy label detection. Notably, numerous previous works assume that no source of labels can be clean in a noisy label detection context. In this work, we relax this assumption and assume that a small subset of the training data is clean, which enables substantial noisy label detection performance gains. Specifically, we propose a novel framework that leverages clean data by framing the problem of noisy label detection with clean data as a multiple hypothesis testing problem. Moreover, we propose BHN, a simple yet effective approach for noisy label detection that integrates the Benjamini-Hochberg (BH) procedure into deep neural networks. BHN achieves $\textit{state-of-the-art}$ performance and outperforms baselines by $\textbf{28.48}$% in terms of false discovery rate (FDR) and by $\textbf{18.99}$% in terms of F1 on CIFAR-10. Extensive ablation studies further demonstrate the superiority of BHN. Our code is available at

Chat is not available.