Skip to yearly menu bar Skip to main content


Poster

Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning

Sébastien Lachapelle · Tristan Deleu · Divyat Mahajan · Ioannis Mitliagkas · Yoshua Bengio · Simon Lacoste-Julien · Quentin Bertrand

Exhibit Hall 1 #644
[ ]
[ Slides [ PDF

Abstract:

Although disentangled representations are often said to be beneficial for downstream tasks, current empirical and theoretical understanding is limited. In this work, we provide evidence that disentangled representations coupled with sparse task-specific predictors improve generalization. In the context of multi-task learning, we prove a new identifiability result that provides conditions under which maximally sparse predictors yield disentangled representations. Motivated by this theoretical result, we propose a practical approach to learn disentangled representations based on a sparsity-promoting bi-level optimization problem. Finally, we explore a meta-learning version of this algorithm based on group Lasso multiclass SVM predictors, for which we derive a tractable dual formulation. It obtains competitive results on standard few-shot classification benchmarks, while each task is using only a fraction of the learned representations.

Chat is not available.