Skip to yearly menu bar Skip to main content


Meta-Learning the Inductive Bias of Simple Neural Circuits

Will Dorrell · Maria Yuffa · Peter Latham

Exhibit Hall 1 #442
[ ]
[ PDF [ Poster


Training data is always finite, making it unclear how to generalise to unseen situations. But, animals do generalise, wielding Occam's razor to select a parsimonious explanation of their observations. How they do this is called their inductive bias, and it is implicitly built into the operation of animals' neural circuits. This relationship between an observed circuit and its inductive bias is a useful explanatory window for neuroscience, allowing design choices to be understood normatively. However, it is generally very difficult to map circuit structure to inductive bias. Here, we present a neural network tool to bridge this gap. The tool meta-learns the inductive bias by learning functions that a neural circuit finds easy to generalise, since easy-to-generalise functions are exactly those the circuit chooses to explain incomplete data. In systems with analytically known inductive bias, i.e. linear and kernel regression, our tool recovers it. Generally, we show it can flexibly extract inductive biases from supervised learners, including spiking neural networks, and show how it could be applied to real animals. Finally, we use our tool to interpret recent connectomic data illustrating our intended use: understanding the role of circuit features through the resulting inductive bias.

Chat is not available.