Abstract:
We study principal component analysis (PCA), where given a dataset in $\mathbb R^d$ from a distribution, the task is to find a unit vector $v$ that approximately maximizes the variance of the distribution after being projected along $v$. Despite being a classical task, standard estimators fail drastically if the data contains even a small fraction of outliers, motivating the problem of robust PCA. Recent work has developed computationally-efficient algorithms for robust PCA that either take super-linear time or have sub-optimal error guarantees. Our main contribution is to develop a nearly linear time algorithm for robust PCA with near-optimal error guarantees. We also develop a single-pass streaming algorithm for robust PCA with memory usage nearly-linear in the dimension.
Chat is not available.