Skip to yearly menu bar Skip to main content


Individually Fair Learning with One-Sided Feedback

Yahav Bechavod · Aaron Roth

Exhibit Hall 1 #712
[ ]
[ PDF [ Poster

Abstract: We consider an online learning problem with one-sided feedback, in which the learner is able to observe the true label only for positively predicted instances. On each round, $k$ instances arrive and receive classification outcomes according to a randomized policy deployed by the learner, whose goal is to maximize accuracy while deploying individually fair policies. We first present a novel auditing scheme, capable of utilizing feedback from dynamically-selected panels of multiple, possibly inconsistent, auditors regarding fairness violations. In particular, we show how our proposed auditing scheme allows for algorithmically exploring the resulting accuracy-fairness frontier, with no need for additional feedback from auditors. We then present an efficient reduction from our problem of online learning with one-sided feedback and a panel reporting fairness violations to the contextual combinatorial semi-bandit problem (Cesa-Bianchi & Lugosi, 2009; Gyorgy et al., 2007), allowing us to leverage algorithms for contextual combinatorial semi-bandits to establish multi-criteria no regret guarantees in our setting, simultaneously for accuracy and fairness. Our results eliminate two potential sources of bias from prior work: the “hidden outcomes” that are not available to an algorithm operating in the full information setting, and human biases that might be present in any single human auditor, but can be mitigated by selecting a well-chosen panel.

Chat is not available.