We study the design decision of publicly available instruction tuning methods, by reproducing and breaking down the development of Flan 2022 (Chung et al., 2022). Through careful ablation studies on the Flan Collection of tasks and methods, we tease apart the effect of design decisions which enable Flan-T5 to outperform prior work by 3-17% across evaluation settings. We find task balancing and enrichment techniques are overlooked but critical to effective instruction tuning, and in particular, training with mixed prompt settings (zero-shot, few-shot, chain-of-thought) actually yields equivalent or stronger (2%) performance in all settings. In further experiments we show Flan-T5 requires less finetuning to converge higher and faster than T5 on single downstream tasks -- motivating instruction-tuned models as more computationally-efficient starting checkpoints for new tasks. Finally, to accelerate research on instruction tuning, we make the Flan 2022 collection of datasets, templates, and methods publicly available.