Skip to yearly menu bar Skip to main content


Poster

Revisiting Sampling for Combinatorial Optimization

Haoran Sun · Katayoon Goshvadi · Azade Nova · Dale Schuurmans · Hanjun Dai

Exhibit Hall 1 #718
[ ]
[ PDF [ Poster

Abstract:

Sampling approaches like Markov chain Monte Carlo were once popular for combinatorial optimization, but the inefficiency of classical methods and the need for problem-specific designs curtailed ongoing development. Recent work has favored data-driven approaches that mitigate the need for hand-craft heuristics, but these are often not usable as out-of-the-box solvers due to dependence on in-distribution training and limited scalability to large instances. In this paper, we revisit the idea of using sampling for combinatorial optimization, motivated by the significant recent advances of gradient-based discrete MCMC and new techniques for parallel neighborhood exploration on accelerators. Remarkably, we find that modern sampling strategies can leverage landscape information to provide general-purpose solvers that require no training and yet are competitive with state of the art combinatorial solvers. In particular, experiments on cover vertex selection, graph partition and routing demonstrate better speed-quality trade-offs over current learning based approaches, and sometimes even superior performance to commercial solvers and specialized algorithms.

Chat is not available.