Skip to yearly menu bar Skip to main content


Efficient Quantum Algorithms for Quantum Optimal Control

Xiantao Li · Chunhao Wang

Exhibit Hall 1 #800
[ ]
[ PDF [ Poster

Abstract: In this paper, we present efficient quantum algorithms that are exponentially faster than classical algorithms for solving the quantum optimal control problem. This problem involves finding the control variable that maximizes a physical quantity at time $T$, where the system is governed by a time-dependent Schrödinger equation. This type of control problem also has an intricate relation with machine learning. Our algorithms are based on a time-dependent Hamiltonian simulation method and a fast gradient-estimation algorithm. We also provide a comprehensive error analysis to quantify the total error from various steps, such as the finite-dimensional representation of the control function, the discretization of the Schrödinger equation, the numerical quadrature, and optimization. Our quantum algorithms require fault-tolerant quantum computers.

Chat is not available.