Despite their success on large datasets, GANs have been difficult to apply in the few-shot setting, where only a limited number of training examples are provided. Due to mode collapse, GANs tend to ignore some training examples, causing overfitting to a subset of the training dataset, which is small in the first place. A recent method called Implicit Maximum Likelihood Estimation (IMLE) is an alternative to GAN that tries to address this issue. It uses the same kind of generators as GANs but trains it with a different objective that encourages mode coverage. However, the theoretical guarantees of IMLE hold under a restrictive condition that the optimal likelihood at all data points is the same. In this paper, we present a more generalized formulation of IMLE which includes the original formulation as a special case, and we prove that the theoretical guarantees hold under weaker conditions. Using this generalized formulation, we further derive a new algorithm, which we dub Adaptive IMLE, which can adapt to the varying difficulty of different training examples. We demonstrate on multiple few-shot image synthesis datasets that our method significantly outperforms existing methods. Our code is available at https://github.com/mehranagh20/AdaIMLE.