Skip to yearly menu bar Skip to main content


Dynamics-inspired Neuromorphic Visual Representation Learning

Zhengqi Pei · Shuhui Wang

Meeting Room 313


This paper investigates the dynamics-inspired neuromorphic architecture for visual representation learning following Hamilton's principle. Our method converts weight-based neural structure to its dynamics-based form that consists of finite sub-models, whose mutual relations measured by computing path integrals amongst their dynamical states are equivalent to the typical neural weights. Based on the entropy reduction process derived from the Euler-Lagrange equations, the feedback signals interpreted as stress forces amongst sub-models push them to move. We first train a dynamics-based neural model from scratch and observe that this model outperforms traditional neural models on MNIST. We then convert several pre-trained neural structures into dynamics-based forms, followed by fine-tuning via entropy reduction to obtain the stabilized dynamical states. We observe consistent improvements in these transformed models over their weight-based counterparts on ImageNet and WebVision in terms of computational complexity, parameter size, testing accuracy, and robustness. Besides, we show the correlation between model performance and structural entropy, providing deeper insight into weight-free neuromorphic learning.

Chat is not available.