

Dynamics-inspired Neuromorphic Visual Representation Learning

Zhengqi Pei¹², Shuhui Wang¹³

¹Institute of Computing Technology, Chinese Academy of Sciences ² School of Artificial Intelligence, University of Chinese Academy of Sciences ³ Peng Cheng Laboratory.

Background & Motivation

Donald Olding Hebb

Learning mechanisms and processes in the nervous system

Weight or Force

Neurons

Hebb's law (1949) describes the principle of synaptic plasticity: sustained and repeated stimulation of presynaptic neurons to postsynaptic neurons can lead to an increase in synaptic transmission efficacy.

Gradients gone! Structure fixed! Computationally redundant! Model black box!

Rosenblatt, 1958

Constant

Step Functio

Flat neural network

The neuronal dynamics without weights

The neuron is placed in hyperspace and the coordinate information represents its neuronal dynamics

Neurons in hyperspace are called submodels and can adjust their dynamics in response to signals

The object being trained is no longer the weights between neurons, but the dynamics of the neurons themselves

During training, signals will be converted into forces that change the dynamics of neurons

$$R_{i}^{(t)} = \sum_{j \neq i}^{N} E_{j}^{(t-\epsilon)} \cdot \varphi\left(q_{j}^{(t-\epsilon)}, q_{i}^{(t)}\right)$$

$$E_{i}^{(t)} = \mathcal{A}R_{i}^{(t)} + \mathcal{B}q_{i}^{(t)} + \mathcal{C}\frac{d}{dt}q_{i}^{(t)}$$

$$\frac{d}{dt}q_{i}^{(t)} = \mathcal{D}R_{i}^{(t)} + \mathcal{E}E_{i}^{(t)} + \mathcal{F}q_{i}^{(t)}$$

Interpreting an MLP as a DyN system

Interpreting arbitrary neural structures as DyN systems

Every tensors-based neural structure (e.g., attention, convolutional layer, FC layer) can be represented by a set of subsystems that deal with time-variant signals

From neural layer to DyN. We denote P(x) as a subsystem containing x sub-models.

Models	Layer Types	DyN Types		
MLP	$M_{FC} \in \mathbb{R}^{m \times n}$	P(m)+P(n)		
CNN	$M_C \in \mathbb{R}^{k \times k \times N_{in} \times N_{out}}$	$2k \cdot P(N_{in} + N_{out})$		
Trans- former	$M_Q \in \mathbb{R}^{T \times d_k}$ $M_K \in \mathbb{R}^{T \times d_k}$ $M_V \in \mathbb{R}^{T \times d_v}$	$P(2d_k + d_v) + P(T)$		

Training arbitrary neural layers with DyN mechanism

Inference with DyN mechanism

Small-scale Experiments on MNIST

Compared against feedforward neural networks and LeNet-5, our randomly initialized DyN models trained from scratch demonstrate higher accuracy, lower computational complexity, and reduced parameter size.

MODEL	LAYER TYPE	NO.COPIES		NO.PARAMS		Test Acc. (%)		
MODEL		FC	Conv	MEMORY	DISK	FIXED (EQ. 6)	UNFIXED (ALG. 1)	
	FC	-		2,290к		$97.89{\pm}0.10$		
3-LAYERED NN	DYN	50	-	1360K	160ĸ	-	$98.32 {\pm} 0.03$	
	DYN	75	-	2170к	250к	-	98.36±0.02	
LENET-5	FC, CONV	-		61.8к		99.06±0.10		
	DYN	2	3	14.50K	2.03ĸ	81.44	99.13±0.10	
	DYN	2	5	16.48к	2.25K	84.95	99.15±0.07	
	DYN	3	6	23.01K	2.98к	96.28	99.21±0.05	
	DYN	5	8	36.04K	4.44K	98.10	99.21±0.09	
	DyN	7	7	46.11K	5.56K	98.83	99.23±0.06	

Experiments on ImageNet+WebVision

MODEL CONFIGS		NO.PARAMS	MACs	ImageNet (%)		WEBVISION (%)	
STRUCTURE	LAYER TYPE	(MILLIONS)	(GFLOPs)	IDEAL	$\delta = 1e^{-3}$	IDEAL	$\delta = 1e^{-3}$
DenseNet-161	FC, Conv	28.68	7.82	75.254	71.336	68.973	61.429
	DyN	6.05	3.28 (0.089)	75.314	75.246	69.033	68.984
RESNET-152	FC, Conv	60.40	11.58	77.014	75.776	69.879	59.435
	DyN	6.51	5.25 (3.5E-3)	77.203	76.604	70.005	69.998
VIT-S-224	FC, Conv, Attn	36.38	1.11	80.108	80.038	72.665	72.509
	DyN	3.71	0.45 (0.75E-3)	80.150	80.122	72.728	72.716
SWINT-S-224	FC, Conv, Attn	49.94	8.52	82.634	82.070	72.755	72.604
	DyN	10.38	3.35 (0.024)	82.646	82.604	72.802	72.740
	DyN	6.65	2.37 (0.018)	82.688	82.660	72.934	72.842

we use several pre-trained models as backbone networks and convert their FC, convolution, and attention layers into DyN forms.

- Parameters reduces
- Robustness on parameters improves
- Testing accuracy slightly improves
- Computational complexity reduces

Thanks