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.- Background & Motivation

Donald Olding Hebb

Learning mechanisms and processes

In the nervous system

Hebb's law (1949) describes the principle of synaptic plasticity: sustained and
repeated stimulation of presynaptic neurons to postsynaptic neurons can lead to an

increase in synaptic transmission efficacy.

Neurons

Deep neural
network

Rosenblatt, 1958
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.- The neuronal dynamics without weights

The neuron is placed in hyperspace
and the coordinate information
represents its neuronal dynamics

Neurons in hyperspace are called sub-
models and can adjust their dynamics
In response to signals

The object being trained is no longer
the weights between neurons, but the
dynamics of the neurons themselves

During training, signals will be
converted into forces that change the
dynamics of neurons






.- Interpreting an MLP as a DyN system
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.- Interpreting arbitrary neural structures as DyN systems

Every tensors-based neural structure (e.g.,
attention, convolutional layer, FC layer) can
be represented by a set of subsystems that
deal with time-variant signals

T34 Ty

From neural layer to DyN. We
denote P(x) as a subsystem
containing x sub-models.

Models Layer Types DyN Types
MLP Mpc € R™*™ P(m)+P(n) O3
CNN  Mc € R¥*kxNinxNout 9k . P(N;n + Nout)

Trans- Mg € R %

P Mg € RT*4% P(2dy. + d,)+P(T)

My € RTXd"




.- Training arbitrary neural layers with DyN mechanism

Step 1:Configure the (arbitrary) target neural structures using DyN forms.

Method 1

L

amongst sub-models.

Step 2:Compute t‘he path integrals
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Step 3:Recover the weight-based model
and fine-tune it based on labels.
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Step 4:Find the stress forces f between
fine-tuned weights and path integrals.

Method 2
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Step 2:Feedforward the DyN model and
get the output signals P.
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Step 3: Obtain the feedback signals
L=|T-PIl,basedon labels T.
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Step 2:Compute the stress forces f = Z—g

based on the configured structures.
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Step 5:Update the sub-models via
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F(Q, f) until reaches local equilibrium.
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Step 6:Repeat step 2 ~ 5 until reaches global equilibrium.




.- Inference with DyN mechanism




.- Small-scale Experiments on MNIST

Compared against feedforward neural networks and
LeNet-5, our randomly initialized DyN models trained
from scratch demonstrate higher accuracy, lower
computational complexity, and reduced parameter size.
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NIGHHE A TS5 No.COPIES NO.PARAMS TEST Acc. (%)
FC Conv MEMORY Disk FIXED (EQ. 6) UNFIXED (ALG. 1)

FC 2,290k 97.89+0.10
3-LAYERED NN DYN 50 - 1360k 160K - 98.32+4+0.03
DYN 15 - 2170k 250K - 98.36+0.02

FC, Conv 61.8K 99.06+0.10
DYN 2 3 14.50K 2.03K 81.44 99.134+0.10
fopr DYN 2 = 16.48K 2.25K 84.95 99.154+0.07
DYN 3 6 23.01k 2.98K 96.28 99.214+0.05
DYN 5 8 36.04K 4.44K 98.10 99.214+0.09
DYN 7 7 46.11K 5.56K 98.83 99.23+0.06




.- Experiments on ImageNet+WebVision

MODEL CONFIGS NO.PARAMS MACs IMAGENET (%) WEBVISION (%)
STRUCTURE LAYER TYPE (MICLIENE) (GHLOLR) IDEAL é=le™® IDEAL d=le 3
FC, Conv 28.68 1.82 75.254 71.336 68.973 61.429
DeEnsENEF-16] DYN 6.05 3.28 (0.089) 75314 75246  69.033  68.984
FC, Conv 60.40 11.58 77.014 75.776 69.879 59.435
ResNET-132 DYN 6.51 5.25(3.56-3) 77.203 76.604  70.005  69.998
ViT.s.004  FC: CONV, ATTN 36.38 1.11 80.108 80.038 72.665 72.509
DYN 3.71 0.45(0.75-3) 80.150  80.122 72728  72.716
FC, CONV, ATIN 49.94 8.52 82.634 82.070 72.755 72.604
SWINT-S-224 DYN 10.38 3.35(0.024)  82.646 82.604 72.802 72.740
DYN 6.65 2.37(0.018)  82.688  82.660 72934  72.842
90
78.75 e
675 we use several pre-trained models as backbone networks and
S 625 convert their FC, convolution, and attention layers into DyN forms.
B B Parameters reduces
§er = B Robustness on parameters improves
— SwinDyN (!nteractive) . . o . .
1;"2; SN e SO skt B Testing accuracy slightly improves
Twom om0 s B Computational complexity reduces
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